
Page 1 Namir’s R 203 Best Regression Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

Namir’s R 203 Best Regression Tutorial

by

Namir Shammas

Table of Contents
Introduction ... 5

The Rationale .. 5

The Root Concept ... 5

Expanding the Search ... 6

The Proposed R Functions .. 6

Shifting and Scaling Data ... 8

Helper Functions ... 8

The has.zero() Function .. 8

The has.neg() Function ... 9

The say.fy() Function .. 9

The say.fx() Function .. 9

The show.results() Function.. 10

Using the Helper Functions .. 12

The best.lr() Function ... 12

The Function Declaration ... 12

The Source Code ... 13

A Sample Run ... 14

The best.mlr1() Function .. 15

The Function Declaration ... 15

The Source Code ... 16

A Sample Run ... 18

The best.mlr1b() Function .. 18

Page 2 Namir’s R 203 Best Regression Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

The Function Declaration ... 18

The Source Code ... 19

A Sample Run ... 21

The best.mlr2() Function .. 22

The Function Declaration ... 22

The Source Code ... 22

A Sample Run ... 24

The best.mlr2b() Function .. 25

The Function Declaration ... 25

The Source Code ... 26

A Sample Run ... 28

A Second Generation .. 29

The Functions write.best.lr() and read.best.lr() .. 30

The Declaration of Function write.best.lr() .. 30

The Source Code ... 30

The Declaration of Function read.best.lr() .. 31

The Source Code ... 31

A Sample Run ... 33

The Functions write.best.mlr1() and read.best.mlr1() .. 35

The Declaration of Function write.best.mlr1() ... 35

The Source Code ... 35

The Declaration of Function read.best.mlr1() ... 35

The Source Code ... 36

A Sample Run ... 38

The Functions write.best.mlr1b() and read.best.mlr1b() .. 39

The Declaration of Function write.best.mlr1b() ... 39

The Source Code ... 39

The Declaration of Function read.best.mlr1b() ... 40

The Source Code ... 40

A Sample Run ... 42

The Functions write.best.mlr2() and read.best.mlr2() .. 43

Page 3 Namir’s R 203 Best Regression Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

The Declaration of Function write.best.mlr2() ... 43

The Source Code ... 43

The Declaration of Function read.best.mlr2() ... 44

The Source Code ... 44

A Sample Run ... 46

The Functions write.best.mlr2b() and read.best.mlr2b() .. 48

The Declaration of Function write.best.mlr2b() ... 48

The Source Code ... 48

The Declaration of Function read.best.mlr2b() ... 49

The Source Code ... 49

A Sample Run ... 51

Best-Model Test Cases ... 52

The Best Model to Approximate the Inverse Normal Distribution .. 53

Tested Models ... 53

Test Code .. 53

The Results.. 53

The Best Model to Approximate the Inverse Student-t Distribution .. 55

Tested Models ... 55

Test Code .. 55

The Results.. 56

The Best Model to Approximate the Inverse Chi-square Distribution 58

Tested Models ... 58

Test Code .. 59

The Results.. 59

The Best Model to Approximate the Inverse F Distribution .. 62

Tested Models ... 62

Test Code .. 62

The Results.. 62

Using the Significance Levels .. 64

The Inverse Normal Distribution .. 65

The Inverse Student-t Distribution .. 66

Page 4 Namir’s R 203 Best Regression Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

The Inverse Chi-square Distribution ... 66

The Inverse F Distribution ... 66

Massaging the Best-Model Search Output ... 67

The VBA Code ... 67

The Main Tasks of the VBA Code ... 72

Sample Input and Output .. 73

Page 5 Namir’s R 203 Best Regression Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

R > S
“The better is the enemy of the good.”

Voltaire

Introduction
This tutorial complements Namir’s R 101 Tutorial, Namir’s R 102 Plotting Tutorial, and

Namir’s 201 Regression Tutorial. This tutorial focuses on automating model selection for two,

three, and four variables. The R functions presented in this tutorial excel in quickly wading

through tens, hundreds, and even thousands of regression models.

The Rationale
The Root Concept

The idea of obtaining the best fit goes back to the days of programmable HP calculators several

decades ago. These calculators offered programs that worked with data for a dependent variable

y and an independent variable x. By using linear (basically no transformation) and logarithmic

transformations on each of these variables, the calculator programs tested the following models

and reported the model with the highest coefficient of determination:

 y = a + b x

 y = a + b ln(x)

 ln(y) = a + b x

 ln(y) = a + b ln(x)

So by just using two transformations on each variable, the calculator programs searched among 4

(equals 2
2
) models.

Page 6 Namir’s R 203 Best Regression Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

Expanding the Search
Moving up from 2 to n transformations, a similar R function can search among n

2
 models for two

regression variables. In the case of three and four regression variables you have n
3
 and n

4

models!

The following table shows the suggested transformation set and numeric code associated with

them.

Table 1. The list of transformations.

Transformation Numeric Code for the Transformation

x 1

x^2 2

x^3 3

sqrt(x) 4

ln(x) 0

1/x –1

1/x
2
 –2

1/x3 –3

1/sqrt(x) –4

A best-model searching R function has to apply up to 9 transformations on each regression

variable. The key word here is up to. If the regression data has zeros and negative numbers, then

the model selection process has to bypass using certain transformations, such as the square root

and the natural logarithm, to name a few. Thus, the best-model searching R functions have to

scan the data for negative values and for zeros and flag them.

The Proposed R Functions
The next table lists the set of best-model searching R functions that I present in this tutorial and

indicate the scope of their model search.

Table 2. The best-model searching R functions.

Name of R Function Total Number of

Variables

Scope of Model Search

best.lr() 2 Searches for the best model:

fy(y) = a + b fx(x)

Among a maximum of 81 models.

best.mlr1() 3 Searches for the best model:

fy(y) = a + b fx1(x1) + c fx2(x2)

Among a maximum of 729 models.

best.mlr1b() 2 Searches for the best model:

Page 7 Namir’s R 203 Best Regression Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

Name of R Function Total Number of

Variables

Scope of Model Search

fy(y) = a + b fx1(x) + c fx2(x)

Among a maximum of 324 distinct models.

The functions fx1 and fx2 are different

transformations.

best.mlr2() 4 Searches for the best model:

fy(y) = a + b fx1(x1) + c fx2(x2) + d fx3(x3)

Among a maximum of 6561 models.

best.mlr2b() 2 Searches for the best model:

fy(y) = a + b fx1(x) + c fx2(x) + d fx3(x)

Among a maximum of 756 distinct models.

The functions fx1, fx2, and fx3 are different

transformations.

In the case of functions mlr1b() and mlr2b(), the regression occurs between two variables. The

independent variable appears in multiple terms. When these functions apply transformations to

the independent variable, they need to avoid applying the same transformation twice. Also these

functions need to avoid redundant symmetry. Symmetric terms generate basically the same

model by swapping the transformations for the same variable. For example, the models

fy(y) = A + B fx1(x) + C fx2(x)

fy(y) = a + b fx2(x) + c fx1(x)

Are symmetric, since regression on these two models yields B = c and C = b. The two models are

essentially the same, with terms simply shuffled around. While symmetrical terms generate no

runtime error, they tend to make you see many doubles when you look at the best-model results.

The functions in the above table perform linearized regression on numerous models and sort the

result based on the value of the F statistics for each model. I chose to use the F statistic since it

has no upper limit as does the coefficient of determination. The functions return the following

data for each regression:

 The F statistic. This value is used as the key in sorting the results.

 The coefficient of determination, R
2
.

 The regression intercept.

 The regression slopes for each independent variable/term.

 The R-style formula used to specify the regression model.

Page 8 Namir’s R 203 Best Regression Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

Keep in mind that each function returns results that share the same degrees of freedom.

Shifting and Scaling Data
What about shifting and scaling the regression data? The answer is that such an operation, where

you multiply a regression variable by a scale and then add a shift value, is a double edged sword.

When you apply the same scale and shift values to a regression variable and then feed the results

to a best-model seeking function, the results can be mixed. Such data massaging can give certain

models an advantage while put other models at a disadvantage. So when it comes to scaling and

shifting data, I will leave that to you. You can perform such operations very easily on the

regression data and right before you call a best-model searching function.

The tools I offer do not offer a magical path to the best empirical model or confirming theoretical

models through regression. These tools significantly reduce the time for searching through tens,

hundreds, and even thousands of regression models. Experience shows that the errors in the data

may well favor certain regression models over others. It is a good practice to prudently look at

the list of leading models and not solely focus on (more like obsess with) the very best model. If

you can afford the luxury of having additional data sets to work with, then the best empirical

model selection may benefit from that.

Pitting one regression model against another is nothing short of stirring a war of curvatures, so to

speak. The fittest model is the one that accommodates the data (and errors in the data) with the

best curvature. May the best regression model win!

Helper Functions
Before I discuss the best-model searching R functions, I present their helper functions. These

functions, which play a vital supporting role, are has.zero(), has.neg(), say.fx(), say.fy(), and

show.results().

The has.zero() Function
The has.zero(x) function which returns TRUE if the vector x contains a zero. Here is the source

code for the function:

has.zero = function(x)

{

 # return TRUE if vector x has a zero value

 for (i in 1:length(x)) {

 if (x[i] == 0) return (TRUE)

 }

 return (FALSE)

}

The function searches all of the elements in vector x and does not need that the vector be sorted.

Page 9 Namir’s R 203 Best Regression Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

The has.neg() Function
The has.neg(x) function which returns TRUE if the vector x contains a negative value. Here is

the source code for the function:

has.neg = function(x)

{

 # return TRUE if vector x has a negative value

 for (i in 1:length(x)) {

 if (x[i] < 0) return (TRUE)

 }

 return (FALSE)

}

The say.fy() Function
The say.fy(index, varname) function builds part of the regression formula that involves the

dependent variable. The parameter index represents the transformation code that appears in

Table 1. The parameter varname is the name of the dependent variable. It MUST match the

name of the dependent variable vector that is passed to the best-model searching functions. Here

is the source code for the function:

say.fy = function(index, varname)

{

 # translate the transformation index into a term with the

 # specified dependent variable

 if (index == 1)

 return (varname)

 else if (index == 2)

 return (paste(varname, "^2", sep=""))

 else if (index == 3)

 return (paste(varname, "^3", sep=""))

 else if (index == 0)

 return (paste("log(", varname, ")", sep=""))

 else if (index == -1)

 return (paste("1/", varname, "", sep=""))

 else if (index == -2)

 return (paste("1/", varname, "^2", sep=""))

 else if (index == -3)

 return (paste("1/", varname, "^3", sep=""))

 else if (index == 4)

 return (paste("sqrt(", varname, ")", sep=""))

 else if (index == -4)

 return (paste("1/sqrt(", varname, ")", sep=""))

 else

 return (varname)

}

The say.fx() Function
The say.fx(index, varname) function builds part of the regression formula that involves the

independent variable. The parameter index represents the transformation code that appears in

Table 1. The parameter varname is the name of the independent variable. It MUST match the

Page 10 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

name of the independent variable vector that is passed to the best-model searching functions.

Here is the source code for the function:

say.fx = function(index, varname)

{

 # translate the transformation index into a term with the

 # specified independent variable

 if (index == 1)

 return (varname)

 else if (index == 2)

 return (paste("I(", varname, "^2)", sep=""))

 else if (index == 3)

 return (paste("I(", varname, "^3)", sep=""))

 else if (index == 0)

 return (paste("I(log(", varname, "))", sep=""))

 else if (index == -1)

 return (paste("I(1/", varname, ")", sep=""))

 else if (index == -2)

 return (paste("I(1/", varname, "^2)", sep=""))

 else if (index == -3)

 return (paste("I(1/", varname, "^3)", sep=""))

 else if (index == 4)

 return (paste("I(sqrt(", varname, "))", sep=""))

 else if (index == -4)

 return (paste("I(1/sqrt(", varname, "))", sep=""))

 else

 return (varname)

}

The show.results() Function
The function show.results(list.res, outfile, show.best=–1,) displays results to the R Console

window and possibly send the same output to a text file. The parameter list.res is a list that

contains the results for the best-model search. The parameter outfile specifies the output file.

The default value is an empty string which suppresses file output. Passing an invalid filename

generates a runtime error. The parameter show.best tells the function how many models to

display. The default of –1 tells the function to show all the models. Here is the source code for

the function:

show.results = function(list.res, show.best=-1, outfile="",)

{

 # show the results

 mat.res = list.res$mat

 formula.arr = list.res$form

 # get the number of models obtained and the number of results

 n.models = nrow(mat.res)

 n.res = ncol(mat.res)

 # remove the output file if it exists

 if (file.exists(outfile)) {

 file.remove(outfile)

 }

Page 11 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 # determine how many values to display

 if (show.best == -1) {

 n = n.models

 }

 else {

 if (show.best > n.models)

 n = n.models

 else

 n = show.best

 }

 # show header if few models are selected

 if (n < n.models) {

 cat("Best ", n, " models\n", sep="")

 if (outfile != "") {

 cat("Best ", n, " models\n", file=outfile, append="TRUE", sep="")

 }

 }

 nobs = list.res$nobs

 cat("Number of observations = ", nobs, "\n", sep="")

 if (outfile != "" & file.exists(outfile)) {

 cat("Number of observations = ", nobs, "\n", file=outfile,

 append="TRUE", sep="")

 }

 # show the best models

 for (i in 1:n) {

 if (mat.res[i,1] > 0) {

 cat("F = ", mat.res[i,1] , ", R^2 = ", mat.res[i,2],

 ", Model is ", formula.arr[i], ", Intercept = ",

 mat.res[i,3], sep="")

 for (j in 4:n.res)

 cat(ifelse(j==n.res, ", and Slope", ", Slope"), j-3,

 " = ", mat.res[i,j], sep="")

 cat("\n")

 }

 }

 # output models to a text file

 if (outfile != "" & file.exists(outfile)) {

 for (i in 1:n) {

 if (mat.res[i,1] > 0) {

 cat("F = ", mat.res[i,1] , ", R^2 = ", mat.res[i,2],

 ", Model is ", formula.arr[i], ", Intercept = ",

 mat.res[i,3], file=outfile, append="TRUE", sep="")

 for (j in 4:n.res)

 cat(ifelse(j==n.res, ", and Slope", ", Slope"), j-3,

 " = ", mat.res[i,j],

 file=outfile, append="TRUE", sep="")

 cat("\n", file=outfile, append="TRUE", sep="")

 }

 }

 }

}

Page 12 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

The parameter list.res is a list that contains the following elements:

 The tag mat contains the matrix of results. The columns for the matrix store the values for

the F statistic, coefficient of determination, the regression intercept, and the regression

slopes--each slope in a separate column.

 The tag form contains the vector of formulas that specify the regression models.

Using the Helper Functions
There are several ways that you can work with the helper functions:

 Include their code in the script file of each best-model seeking function. You end up with

one script that contains all of the functions.

 Save the helper functions and the best-model seeking functions in separate script files and

manually load each script at the command line by calling the source() function.

 In the script file for the best-model seeking function, include a call to function source() to

load the helper functions. Make sure that the call to function source() has the correct path

and script file name for the helper functions.

 Include all of the helper functions and all of the best-model seeking functions in a single

script file. You then have the entire code in a single file that you can easily load from the

command line prompt.

The best.lr() Function
The Function Declaration

The function bes.lr() performs the best-model search for two variables. The declaration for this

function is:

best.lr = function(x, y, name.x="x", name.y="y", quiet=FALSE,

 show.best=-1, outfile="C:/best.lr.txt")

The parameters x and y are the data vectors. The parameters name.x and name.y represent the

string names for the vectors x and y, and MUST match the names of these vectors. The Boolean

parameter quiet is a flag that tells the function best.lr() not to display any results or write any

results to an output file. The parameter show.best specified the number of best models to

display. The default value of -1 tells the function to display all of the results. The parameter

outfile specifies the output file. If you pass an empty string to this parameter, you suppress file

output.

Page 13 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

The Source Code
Here is the source code for the function best.lr():

best.lr = function(x, y, name.x="x", name.y="y", quiet=FALSE,

 show.best=-1, outfile="C:/best.lr.txt")

{

 # x and y are data vectors.

 # name.x is the name for argument for parameter x

 # name.y is the name for argument for parameter y

 # quiet is flag--when TRUE function generates no output

 # show.best specifies the number of best results to show.

 # Default shows all results

 # outfile is the output filename

 max.models=81

 max.res=4

 # initialize variables used for results

 mat.res = matrix(rep(0,max.res*max.models), nrow=max.models, ncol=max.res)

 formula.arr=rep("", max.models)

 v = rep(0,max.res) # dummy vector used for swapping rows in mat.res

 # initialize number of models found

 n.models = 0

 # check for zero and negative values in arrays

 x.has.zero = has.zero(x)

 x.has.neg = has.neg(x)

 y.has.zero = has.zero(y)

 y.has.neg = has.neg(y)

 for (iy in -4:4) {

 # check for zero value restraint

 if (!(y.has.zero & iy <= 0)) {

 # check for negative value restraint

 if (!(y.has.neg & (iy == 4 | iy == -4 | iy == 0))) {

 for (ix in -4:4) {

 # check for zero value restraint

 if (!(x.has.zero & ix <= 0)) {

 # check for negative value restraint

 if (!(x.has.neg & (ix == 4 | ix == -4 | ix == 0))) {

 # increment number of models

 n.models = n.models + 1

 # construct formula

 formula = paste(say.fy(iy,name.y),"~",say.fx(ix,name.x),sep="")

 # perform linearized regression

 lr = lm(formula)

 # get the summary

 slr = summary(lr)

 # build matrix of results

 mat.res[n.models,1] = slr$fstatistic[1]

 mat.res[n.models,2] = slr$r.squared

 mat.res[n.models,3] = slr$coefficients[1]

 mat.res[n.models,4] = slr$coefficients[2]

 formula.arr[n.models] = formula

 }

 }

 }

Page 14 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 }

 }

 }

 # sort the results

 sort.order = order(mat.res[,1], decreasing=TRUE)

 for (i in 1:max.res)

 mat.res[,i] = mat.res[sort.order,i]

 formula.arr = formula.arr[sort.order]

 # store the results in a list

 list.res = list(mat=mat.res, form=formula.arr, nobs=length(y))

 # display the results?

 if(!quiet) show.results(list.res, show.best, outfile)

 return (list.res)

}

The function performs the following tasks:

1. Initializes the variables that store the results.

2. Scans the values in vectors x and y for zeros and negative values. This task stores the

results of these scans to use in the next task.

3. Uses nested for loops to apply all of the transformations on the regression variables. The

loops include several if statements that check for zeros and negative values and how they

can prevent applying certain transformations.

4. The innermost if statement builds the model for the regression and performs a linearized

regression by calling function lm(). The function stores the results of functions lm() and

summary(). With this information at hand, the function stores a subset of the total results

in matrix mat.res and vector formula.arr.

5. Sorts the data matrix mat.res and vector formula.arr, using the first column of matrix

mat.res as the sort key values.

6. Stores the matrix mat.res, the vector formula.arr, and the number of observations in the

list list.res.

7. Calls function show.results() to display the results if the value in parameter quiet is

FALSE.

8. Returns the list list.res.

A Sample Run
Once you store the function best.lr() and the helper functions, load them using the source()

function. To test the best.lr() function, execute the following commands:

> x=runif(20,1,10)

> y=x^2-4

> lr.list = best.lr(x,y,show.best=10)

Page 15 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

Best 10 models

Number of observations = 20

F = 4.418392e+32, R^2 = 1, Model is y~I(x^2), Intercept = -4, and Slope1 = 1

F = 6969.695, R^2 = 0.997424, Model is 1/y^2~I(1/x^2), Intercept = -

0.002144087, and Slope1 = 0.1494861

F = 3150.522, R^2 = 0.9943191, Model is 1/y^3~I(1/x^3), Intercept =

0.000460766, and Slope1 = -0.05667038

F = 1861.481, R^2 = 0.9904229, Model is 1/y^2~I(1/x^3), Intercept =

0.001092446, and Slope1 = 0.1580089

F = 1077.338, R^2 = 0.9835667, Model is y^2~I(x^3), Intercept = -786.1159,

and Slope1 = 9.361907

F = 849.3212, R^2 = 0.9792464, Model is 1/y^3~I(1/x^2), Intercept =

0.001580754, and Slope1 = -0.05301868

F = 847.2644, R^2 = 0.9791971, Model is y~I(x^3), Intercept = 8.901373, and

Slope1 = 0.09281814

F = 455.8737, R^2 = 0.9620152, Model is 1/y^2~I(1/x), Intercept = -

0.02149645, and Slope1 = 0.1518563

F = 357.5352, R^2 = 0.9520684, Model is y~x, Intercept = -35.24081, and

Slope1 = 12.17854

F = 233.012, R^2 = 0.9282903, Model is y^2~I(x^2), Intercept = -1889.593, and

Slope1 = 96.9631

The function best.lr() succeeds in identifying the correct model:

 y = x^2 – 4

Experiment with introducing random errors in the data and then call the best-model selection

function. Notice whether or not other models start to compete with the original model as you

increase the level of errors.

The best.mlr1() Function
The Function Declaration
The function bes.mlr1() performs the best-model search for three variables. The declaration for

this function is:

best.mlr1 = function(x1, x2, y, name.x1="x1", name.x2="x2", name.y="y",

 quiet=FALSE, show.best=20, outfile="C:/best.mlr1.txt")

The parameters x1, x2, and y are the data vectors. The parameters name.x1, name.x2, and

name.y represent the string names for the vectors x1, x2, and y, and MUST match the names of

these vectors. The Boolean parameter quiet is a flag that tells the function best.mlr1() not to

display any results or write any results to an output file. The parameter show.best specified the

number of best models to display. The default value of -1 tells the function to display all of the

results. The parameter outfile specifies the output file. If you pass an empty string to this

parameter, you suppress file output.

Page 16 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

The Source Code
Here is the source code for the function best.mlr1():

best.mlr1 = function(x1, x2, y, name.x1="x1", name.x2="x2", name.y="y",

 quiet=FALSE, show.best=20, outfile="C:/best.mlr1.txt")

{

 # x1, x2, and y are data vectors.

 # name.x1 is the name for argument for parameter x1

 # name.x2 is the name for argument for parameter x2

 # name.y is the name for argument for parameter y

 # quiet is flag--when TRUE function generates no output

 # show.best specifies the number of best results to show.

 # Default shows 20 best

 # outfile is the output filename

 max.models=9^3

 max.res=5

 # initialize variables used for results

 mat.res = matrix(rep(0,max.res*max.models), nrow=max.models, ncol=max.res)

 formula.arr=rep("", max.models)

 v = rep(0,max.res) # dummy vector used for swapping rows in mat.res

 # initialize number of models found

 n.models = 0

 # check for zero and negative values in arrays

 x1.has.zero = has.zero(x1)

 x1.has.neg = has.neg(x1)

 x2.has.zero = has.zero(x2)

 x2.has.neg = has.neg(x2)

 y.has.zero = has.zero(y)

 y.has.neg = has.neg(y)

 for (iy in -4:4) {

 # check for zero value restraint

 if (!(y.has.zero & iy <= 0)) {

 # check for negative value restraint

 if (!(y.has.neg & (iy == 4 | iy == -4 | iy == 0))) {

 for (ix1 in -4:4) {

 # check for zero value restraint

 if (!(x1.has.zero & ix1 <= 0)) {

 # check for negative value restraint

 if (!(x1.has.neg & (ix1 == 4 | ix1 == -4 | ix1 == 0))) {

 for (ix2 in -4:4) {

 # check for zero value restraint

 if (!(x2.has.zero & ix2 <= 0)) {

 # check for negative value restraint

 if (!(x2.has.neg & (ix2 == 4 | ix2 == -4 | ix2 == 0))) {

 # increment number of models

 n.models = n.models + 1

 # construct formula

 formula = paste(say.fy(iy,name.y), "~",

 say.fx(ix1,name.x1), "+", say.fx(ix2,name.x2), sep="")

 # perform linearized regression

 mlr = lm(formula)

 # get the summary

 smlr = summary(mlr)

Page 17 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 # build matrix of results

 mat.res[n.models,1] = smlr$fstatistic[1]

 mat.res[n.models,2] = smlr$r.squared

 for(i in 1:3)

 mat.res[n.models,i+2] = smlr$coefficients[i]

 formula.arr[n.models] = formula

 }

 }

 }

 }

 }

 }

 }

 }

 }

 # sort the results

 sort.order = order(mat.res[,1], decreasing=TRUE)

 for (i in 1:max.res)

 mat.res[,i] = mat.res[sort.order,i]

 formula.arr = formula.arr[sort.order]

 # store the results in a list

 list.res = list(mat=mat.res, form=formula.arr, nobs=length(y)))

 # display the results?

 if(!quiet) show.results(list.res, show.best, outfile)

 return (list.res)

}

The function performs the following tasks:

1. Initializes the variables that store the results.

2. Scans the values in vectors x1, x2, and y for zeros and negative values. This task stores

the results of these scans to use in the next task.

3. Uses nested for loops to apply all of the transformations on the regression variables. The

loops include several if statements that check for zeros and negative values and how they

can prevent applying certain transformations.

4. The innermost if statement builds the model for the regression and performs a linearized

regression by calling function lm(). The function stores the results of functions lm() and

summary(). With this information at hand, the function stores a subset of the total results

in matrix mat.res and vector formula.arr.

5. Sorts the data matrix mat.res and vector formula.arr, using the first column of matrix

mat.res as the sort key values.

6. Stores the matrix mat.res, the vector formula.arr, and the number of observations in the

list list.res.

Page 18 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

7. Calls function show.results() to display the results if the value in parameter quiet is

FALSE.

8. Returns the list list.res.

A Sample Run
Once you store the function best.mlr1() and the helper functions, load them using the source()

function. To test the best.mlr1() function, execute the following commands:

> x1=runif(20,1,10)

> x2=runif(20,1,10)

> y=10+x1^2-4/x2

> mlr1.lst = best.mlr1(x1,x2,y,show.best=10)

Best 10 models

Number of observations = 20

F = 2.217171e+32, R^2 = 1, Model is y~I(x1^2)+I(1/x2), Intercept = 10, Slope1

= 1, and Slope2 = -4

F = 1083037, R^2 = 0.9999922, Model is y~I(x1^2)+I(1/sqrt(x2)), Intercept =

11.07334, Slope1 = 1.000045, and Slope2 = -4.315609

F = 383183.6, R^2 = 0.9999778, Model is y~I(x1^2)+I(1/x2^2), Intercept =

9.49005, Slope1 = 0.9996174, and Slope2 = -5.324091

F = 272828.2, R^2 = 0.9999688, Model is y~I(x1^2)+I(log(x2)), Intercept =

7.391099, Slope1 = 0.9999082, and Slope2 = 1.053988

F = 143839.4, R^2 = 0.999941, Model is y~I(x1^2)+I(1/x2^3), Intercept =

9.363164, Slope1 = 0.9992464, and Slope2 = -7.619819

F = 129808.9, R^2 = 0.9999345, Model is y~I(x1^2)+I(sqrt(x2)), Intercept =

6.950108, Slope1 = 0.9995863, and Slope2 = 0.9366696

F = 81844.68, R^2 = 0.9998962, Model is y~I(x1^2)+x2, Intercept = 8.061064,

Slope1 = 0.9991268, and Slope2 = 0.1920718

F = 49263.76, R^2 = 0.9998275, Model is y~I(x1^2)+I(x2^2), Intercept =

8.687222, Slope1 = 0.998057, and Slope2 = 0.01362967

F = 38581.06, R^2 = 0.9997797, Model is y~I(x1^2)+I(x2^3), Intercept =

8.929396, Slope1 = 0.997082, and Slope2 = 0.001129781

F = 2859.942, R^2 = 0.9970367, Model is log(y)~I(sqrt(x1))+I(1/x2), Intercept

= 0.8217708, Slope1 = 1.220513, and Slope2 = -0.007348296

The function best.mlr1() succeeds in identifying the correct model. Experiment with introducing

random errors in the data and then call the best-model selection function. Notice whether or not

other models start to compete with the original model as you increase the level of errors.

The best.mlr1b() Function
The Function Declaration
The function bes.mlr1b() performs the best-model search for two variables. The declaration for

this function is:

best.mlr1b = function(x, y, name.x="x", name.y="y",

Page 19 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 quiet=FALSE, show.best=20, outfile="C:/best.mlr1b.txt")

The parameters x and y are the data vectors. The parameters name.x and name.y represent the

string names for the vectors x and y, and MUST match the names of these vectors. The Boolean

parameter quiet is a flag that tells the function best.mlr1b() not to display any results or write

any results to an output file. The parameter show.best specified the number of best models to

display. The default value of -1 tells the function to display all of the results. The parameter

outfile specifies the output file. If you pass an empty string to this parameter, you suppress file

output.

The Source Code
Here is the source code for the function best.mlr1b():

best.mlr1b = function(x, y, name.x="x", name.y="y",

 quiet=FALSE, show.best=20, outfile="C:/best.mlr1b.txt")

{

 # x and y are data vectors.

 # name.x is the name for argument for parameter x

 # name.y is the name for argument for parameter y

 # quiet is flag--when TRUE function generates no output

 # show.best specifies the number of best results to show.

 # Default shows 20 best

 # outfile is the output filename

 max.models=9^3

 max.res=5

 # initialize variables used for results

 mat.res = matrix(rep(0,max.res*max.models), nrow=max.models, ncol=max.res)

 formula.arr=rep("", max.models)

 v = rep(0,max.res) # dummy vector used for swapping rows in mat.res

 # initialize number of models found

 n.models = 0

 # check for zero and negative values in arrays

 x.has.zero = has.zero(x)

 x.has.neg = has.neg(x)

 y.has.zero = has.zero(y)

 y.has.neg = has.neg(y)

 for (iy in -4:4) {

 # check for zero value restraint

 if (!(y.has.zero & iy <= 0)) {

 # check for negative value restraint

 if (!(y.has.neg & (iy == 4 | iy == -4 | iy == 0))) {

 for (ix1 in -4:4) {

 # check for zero value restraint

 if (!(x.has.zero & ix1 <= 0)) {

 # check for negative value restraint

 if (!(x.has.neg & (ix1 == 4 | ix1 == -4 | ix1 == 0))) {

 for (ix2 in ix1:4) {

 # avoid the same transformations

 if (ix1 != ix2) {

 # check for zero value restraint

Page 20 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 if (!(x.has.zero & ix2 <= 0)) {

 # check for negative value restraint

 if (!(x.has.neg & (ix2 == 4 | ix2 == -4 | ix2 == 0))) {

 # increment number of models

 n.models = n.models + 1

 # construct formula

 formula = paste(say.fy(iy,name.y), "~",

 say.fx(ix1,name.x),

 "+", say.fx(ix2,name.x), sep="")

 # perform linearized regression

 mlr = lm(formula)

 # get the summary

 smlr = summary(mlr)

 # build matrix of results

 mat.res[n.models,1] = smlr$fstatistic[1]

 mat.res[n.models,2] = smlr$r.squared

 for(i in 1:3)

 mat.res[n.models,i+2] = smlr$coefficients[i]

 formula.arr[n.models] = formula

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 # sort the results

 sort.order = order(mat.res[,1], decreasing=TRUE)

 for (i in 1:max.res)

 mat.res[,i] = mat.res[sort.order,i]

 formula.arr = formula.arr[sort.order]

 # store the results in a list

 list.res = list(mat=mat.res, form=formula.arr, nobs=length(y)))

 # display the results?

 if(!quiet) show.results(list.res, show.best, outfile)

 return (list.res)

}

The function performs the following tasks:

1. Initializes the variables that store the results.

2. Scans the values in vectors x and y for zeros and negative values. This task stores the

results of these scans to use in the next task.

3. Uses nested for loops to apply all of the transformations on the regression variables. The

loops include several if statements that check for zeros and negative values and how they

Page 21 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

can prevent applying certain transformations. In addition, the code avoids redundant and

symmetric terms for the vector x. Redundant will have two terms with the same

transformation—not a good idea if you want to avoid runtime error. The innermost if

statement builds the model for the regression and performs a linearized regression by

calling function lm(). The function stores the results of functions lm() and summary().

With this information at hand, the function stores a subset of the total results in matrix

mat.res and vector formula.arr.

4. Sorts the data matrix mat.res and vector formula.arr, using the first column of matrix

mat.res as the sort key values.

5. Stores the matrix mat.res, the vector formula.arr, and the number of observations in the

list list.res.

6. Calls function show.results() to display the results if the value in parameter quiet is

FALSE.

7. Returns the list list.res.

A Sample Run

Once you store the function best.mlr1b() and the helper functions, load them using the source()

function. To test the best.mlr1b() function, execute the following commands:

> x=runif(20,1,10)

> y=10+x^2-4/x

> mlr1b.lst = best.mlr1b(x,y,show.best=10)

Best 10 models

Number of observations = 20

F = 2.252852e+32, R^2 = 1, Model is y~I(1/x)+I(x^2), Intercept = 10, Slope1 =

-4, and Slope2 = 1

F = 1387419, R^2 = 0.9999939, Model is y~I(1/sqrt(x))+I(x^2), Intercept =

12.07094, Slope1 = -5.882417, and Slope2 = 0.9926577

F = 593573, R^2 = 0.9999857, Model is y~I(1/x^2)+I(x^2), Intercept = 8.99292,

Slope1 = -3.155545, and Slope2 = 1.008332

F = 330034.9, R^2 = 0.9999742, Model is y~I(log(x))+I(x^2), Intercept =

6.452223, Slope1 = 2.040739, and Slope2 = 0.9820683

F = 251955.2, R^2 = 0.9999663, Model is 1/y^3~I(1/sqrt(x))+I(1/x^2),

Intercept = 0.0001569481, Slope1 = -0.0005883813, and Slope2 = 0.003325193

F = 243637.1, R^2 = 0.9999651, Model is y~I(1/x^3)+I(x^2), Intercept =

8.718859, Slope1 = -2.914116, and Slope2 = 1.011822

F = 199658.5, R^2 = 0.9999574, Model is 1/y^3~I(1/x^2)+I(log(x)), Intercept =

-0.0003042402, Slope1 = 0.003194018, and Slope2 = 0.0001231346

F = 174971.1, R^2 = 0.9999514, Model is 1/y^2~I(1/x)+I(log(x)), Intercept = -

0.01118981, Slope1 = 0.031434, and Slope2 = 0.003573156

F = 171422.6, R^2 = 0.9999504, Model is sqrt(y)~x+I(x^2), Intercept =

1.945761, Slope1 = 0.7125468, and Slope2 = 0.01429142

F = 150571.7, R^2 = 0.9999436, Model is y~I(x^2)+I(sqrt(x)), Intercept =

4.020623, Slope1 = 0.9659033, and Slope2 = 2.736114

The function best.mlr1b() succeeds in identifying the correct model. Experiment with

introducing random errors in the data and then call the best-model selection function. Notice

Page 22 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

whether or not other models start to compete with the original model as you increase the level of

errors.

The best.mlr2() Function
The Function Declaration
The function bes.mlr2() performs the best-model search for four variables. The declaration for

this function is:

best.mlr2 = function(x1, x2, x3, y, name.x1="x1", name.x2="x2", name.x3="x3",

 name.y="y", quiet=FALSE, show.best=20,

 outfile="C:/best.mlr2.txt")

The parameters x1, x2, x3, and y are the data vectors. The parameters name.x1, name.x2,

name.x3, and name.y represent the string names for the vectors x1, x2, x3, and y, and MUST

match the names of these vectors. The Boolean parameter quiet is a flag that tells the function

best.mlr2() not to display any results or write any results to an output file. The parameter

show.best specified the number of best models to display. The default value of -1 tells the

function to display all of the results. The parameter outfile specifies the output file. If you pass

an empty string to this parameter, you suppress file output.

The Source Code
Here is the source code for the function best.mlr2():

best.mlr2 = function(x1, x2, x3, y, name.x1="x1", name.x2="x2", name.x3="x3",

 name.y="y", quiet=FALSE, show.best=20,

outfile="C:/best.mlr2.txt")

{

 # x1, x2, x3, and y are data vectors.

 # name.x1 is the name for argument for parameter x1

 # name.x2 is the name for argument for parameter x2

 # name.x3 is the name for argument for parameter x3

 # name.y is the name for argument for parameter y

 # quiet is flag--when TRUE function generates no output

 # show.best specifies the number of best results to show.

 # Default shows 20 best

 # outfile is the output filename

 max.models=9^4

 max.res=6

 # initialize variables used for results

 mat.res = matrix(rep(0,max.res*max.models), nrow=max.models, ncol=max.res)

 formula.arr=rep("", max.models)

 v = rep(0,max.res) # dummy vector used for swapping rows in mat.res

 # initialize number of models found

 n.models = 0

 # check for zero and negative values in arrays

 x1.has.zero = has.zero(x1)

Page 23 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 x1.has.neg = has.neg(x1)

 x2.has.zero = has.zero(x2)

 x2.has.neg = has.neg(x2)

 x3.has.zero = has.zero(x3)

 x3.has.neg = has.neg(x3)

 y.has.zero = has.zero(y)

 y.has.neg = has.neg(y)

 for (iy in -4:4) {

 # check for zero value restraint

 if (!(y.has.zero & iy <= 0)) {

 # check for negative value restraint

 if (!(y.has.neg & (iy == 4 | iy == -4 | iy == 0))) {

 for (ix1 in -4:4) {

 # check for zero value restraint

 if (!(x1.has.zero & ix1 <= 0)) {

 # check for negative value restraint

 if (!(x1.has.neg & (ix1 == 4 | ix1 == -4 | ix1 == 0))) {

 for (ix2 in -4:4) {

 # check for zero value restraint

 if (!(x2.has.zero & ix2 <= 0)) {

 # check for negative value restraint

 if (!(x2.has.neg & (ix2 == 4 | ix2 == -4 | ix2 == 0))) {

 for (ix3 in -4:4) {

 # check for zero value restraint

 if (!(x3.has.zero & ix3 <= 0)) {

 # check for negative value restraint

 if (!(x3.has.neg & (ix3 == 4 | ix3 == -4 |

 ix3 == 0))) {

 # increment number of models

 n.models = n.models + 1

 # construct formula

 formula = paste(say.fy(iy,name.y), "~",

 say.fx(ix1,name.x1),

 "+", say.fx(ix2,name.x2),

 "+", say.fx(ix3,name.x3), sep="")

 # perform linearized regression

 mlr = lm(formula)

 # get the summary

 smlr = summary(mlr)

 # build matrix of results

 mat.res[n.models,1] = smlr$fstatistic[1]

 mat.res[n.models,2] = smlr$r.squared

 for(i in 1:4)

 mat.res[n.models,i+2] = smlr$coefficients[i]

 formula.arr[n.models] = formula

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

Page 24 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 }

 }

 # sort the results

 sort.order = order(mat.res[,1], decreasing=TRUE)

 for (i in 1:max.res)

 mat.res[,i] = mat.res[sort.order,i]

 formula.arr = formula.arr[sort.order]

 # store the results in a list

 list.res = list(mat=mat.res, form=formula.arr, nobs=length(y)))

 # display the results?

 if(!quiet) show.results(list.res, show.best, outfile)

 return (list.res)

}

The function performs the following tasks:

1. Initializes the variables that store the results.

2. Scans the values in vectors x1, x2, x3, and y for zeros and negative values. This task

stores the results of these scans to use in the next task.

3. Uses nested for loops to apply all of the transformations on the regression variables. The

loops include several if statements that check for zeros and negative values and how they

can prevent applying certain transformations.

4. The innermost if statement builds the model for the regression and performs a linearized

regression by calling function lm(). The function stores the results of functions lm() and

summary(). With this information at hand, the function stores a subset of the total results

in matrix mat.res and vector formula.arr.

5. Sorts the data matrix mat.res and vector formula.arr, using the first column of matrix

mat.res as the sort key values.

6. Stores the matrix mat.res, the vector formula.arr, and the number of observations in the

list list.res.

7. Calls function show.results() to display the results if the value in parameter quiet is

FALSE.

8. Returns the list list.res.

A Sample Run
Once you store the function best.mlr2() and the helper functions, load them using the source()

function. To test the best.mlr2() function, execute the following commands (keep in mind that

the process may last several seconds):

> x1=runif(20,1,10)

> x2=runif(20,1,10)

> x3=runif(20,10,100)

Page 25 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

> y=10+x1^2-4/x2+log(x3)

> mlr2.lst = best.mlr2(x1,x2,x3,y,show.best=10)

Best 10 models

Number of observations = 20

F = 3.929575e+32, R^2 = 1, Model is y~I(x1^2)+I(1/x2)+I(log(x3)), Intercept =

10, Slope1 = 1, Slope2 = -4, and Slope3 = 1

F = 4437158, R^2 = 0.9999988, Model is y~I(x1^2)+I(1/x2)+I(sqrt(x3)),

Intercept = 11.94097, Slope1 = 0.9997764, Slope2 = -3.894320, and Slope3 =

0.2709474

F = 4414091, R^2 = 0.9999988, Model is y~I(x1^2)+I(1/x2)+I(1/sqrt(x3)),

Intercept = 15.96884, Slope1 = 1.000049, Slope2 = -4.084705, and Slope3 = -

14.13160

F = 1247116, R^2 = 0.9999957, Model is y~I(x1^2)+I(1/sqrt(x2))+I(log(x3)),

Intercept = 11.17688, Slope1 = 0.9996687, Slope2 = -4.150386, and Slope3 =

0.9562958

F = 1166913, R^2 = 0.9999954, Model is y~I(x1^2)+I(1/x2)+x3, Intercept =

12.92946, Slope1 = 0.999409, Slope2 = -3.777364, and Slope3 = 0.01759749

F = 1154382, R^2 = 0.9999954, Model is y~I(x1^2)+I(1/x2)+I(1/x3), Intercept =

14.98382, Slope1 = 0.9999235, Slope2 = -4.142409, and Slope3 = -47.86012

F = 1139778, R^2 = 0.9999953, Model is y~I(x1^2)+I(1/sqrt(x2))+I(1/sqrt(x3)),

Intercept = 16.91325, Slope1 = 0.9997394, Slope2 = -4.243904, and Slope3 = -

13.54852

F = 877326.9, R^2 = 0.999994, Model is y~I(x1^2)+I(1/sqrt(x2))+I(sqrt(x3)),

Intercept = 13.00907, Slope1 = 0.9994353, Slope2 = -4.037534, and Slope3 =

0.2585578

F = 745153, R^2 = 0.9999928, Model is y~I(x1^2)+I(1/sqrt(x2))+I(1/x3),

Intercept = 15.98892, Slope1 = 0.9996456, Slope2 = -4.311318, and Slope3 = -

46.01706

F = 543471.6, R^2 = 0.9999902, Model is y~I(x1^2)+I(1/sqrt(x2))+x3, Intercept

= 13.92392, Slope1 = 0.99907, Slope2 = -3.915408, and Slope3 = 0.01676484

The function best.mlr2() succeeds in identifying the correct model. Experiment with introducing

random errors in the data and then call the best-model selection function. Notice whether or not

other models start to compete with the original model as you increase the level of errors.

The best.mlr2b() Function
The Function Declaration
The function bes.mlr2b() performs the best-model search for two variables. The declaration for

this function is:

best.mlr2b = function(x, y, name.x="x", name.y="y", quiet=FALSE,

 show.best=20, outfile="C:/best.mlr1.txt")

The parameters x and y are the data vectors. The parameters name.x and name.y represent the

string names for the vectors x and y, and MUST match the names of these vectors. The Boolean

parameter quiet is a flag that tells the function best.mlr2b() not to display any results or write

Page 26 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

any results to an output file. The parameter show.best specified the number of best models to

display. The default value of -1 tells the function to display all of the results. The parameter

outfile specifies the output file. If you pass an empty string to this parameter, you suppress file

output.

The Source Code
Here is the source code for the function best.mlr2b():

best.mlr2b = function(x, y, name.x="x", name.y="y", quiet=FALSE,

 show.best=20, outfile="C:/best.mlr2b.txt")

{

 # x and y are data vectors

 # name.x is the name for argument for parameter x

 # name.y is the name for argument for parameter y

 # quiet is flag--when TRUE function generates no output

 # show.best specifies the number of best results to show.

 # Default shows 20 best

 # outfile is the output filename

 max.models=9^4

 max.res=6

 # initialize variables used for results

 mat.res = matrix(rep(0,max.res*max.models), nrow=max.models, ncol=max.res)

 formula.arr=rep("", max.models)

 v = rep(0,max.res) # dummy vector used for swapping rows in mat.res

 # initialize number of models found

 n.models = 0

 # check for zero and negative values in arrays

 x.has.zero = has.zero(x)

 x.has.neg = has.neg(x)

 y.has.zero = has.zero(y)

 y.has.neg = has.neg(y)

 for (iy in -4:4) {

 # check for zero value restraint

 if (!(y.has.zero & iy <= 0)) {

 # check for negative value restraint

 if (!(y.has.neg & (iy == 4 | iy == -4 | iy == 0))) {

 for (ix1 in -4:4) {

 # check for zero value restraint

 if (!(x.has.zero & ix1 <= 0)) {

 # check for negative value restraint

 if (!(x.has.neg & (ix1 == 4 | ix1 == -4 | ix1 == 0))) {

 for (ix2 in ix1:4) {

 if (ix1 != ix2) {

 # check for zero value restraint

 if (!(x.has.zero & ix2 <= 0)) {

 # check for negative value restraint

 if (!(x.has.neg & (ix2 == 4 | ix2 == -4 | ix2 == 0))) {

 for (ix3 in ix2:4) {

 if (ix2 != ix3) {

 # check for zero value restraint

 if (!(x.has.zero & ix3 <= 0)) {

 # check for negative value restraint

Page 27 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 if (!(x.has.neg & (ix3 == 4 | ix3 == -4 |

 ix3 == 0))) {

 # increment number of models

 n.models = n.models + 1

 # construct formula

 formula = paste(say.fy(iy,name.y), "~",

 say.fx(ix1,name.x),

 "+", say.fx(ix2,name.x),

 "+", say.fx(ix3,name.x), sep="")

 # perform linearized regression

 mlr = lm(formula)

 # get the summary

 smlr = summary(mlr)

 # build matrix of results

 mat.res[n.models,1] = smlr$fstatistic[1]

 mat.res[n.models,2] = smlr$r.squared

 for(i in 1:4)

 mat.res[n.models,i+2] = smlr$coefficients[i]

 formula.arr[n.models] = formula

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 # sort the results

 sort.order = order(mat.res[,1], decreasing=TRUE)

 for (i in 1:max.res)

 mat.res[,i] = mat.res[sort.order,i]

 formula.arr = formula.arr[sort.order]

 # store the results in a list

 list.res = list(mat=mat.res, form=formula.arr, nobs=length(y)))

 # display the results?

 if(!quiet) show.results(list.res, show.best, outfile)

 return (list.res)

}

The function performs the following tasks:

1. Initializes the variables that store the results.

2. Scans the values in vectors x and y for zeros and negative values. This task stores the

results of these scans to use in the next task.

Page 28 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

3. Uses nested for loops to apply all of the transformations on the regression variables. The

loops include several if statements that check for zeros and negative values and how they

can prevent applying certain transformations. In addition, the code avoids redundant and

symmetric terms for the vector x. Redundant will have two or three terms with the same

transformation—not a good idea if you want to avoid runtime error. Symmetric terms

generate basically the same model by swapping the transformations for vector x.

4. The innermost if statement builds the model for the regression and performs a linearized

regression by calling function lm(). The function stores the results of functions lm() and

summary(). With this information at hand, the function stores a subset of the total results

in matrix mat.res and vector formula.arr.

5. Sorts the data matrix mat.res and vector formula.arr, using the first column of matrix

mat.res as the sort key values.

6. Stores the matrix mat.res, the vector formula.arr, and the number of observations in the

list list.res.

7. Calls function show.results() to display the results if the value in parameter quiet is

FALSE.

8. Returns the list list.res.

A Sample Run
Once you store the function best.mlr2b() and the helper functions, load them using the source()

function. To test the best.mlr2b() function, execute the following commands (keep in mind that

the process may last several seconds)::

> x=runif(20,1,10)

> y=10+x^2-4/x+log(x)

> mlr2b.lst = best.mlr2b(x,y,show.best=10)

Best 10 models

Number of observations = 20

F = 2.326808e+32, R^2 = 1, Model is y~I(1/x)+I(log(x))+I(x^2), Intercept =

10, Slope1 = -4, Slope2 = 1, and Slope3 = 1

F = 5940365075, R^2 = 1, Model is y~I(1/sqrt(x))+I(1/x^2)+I(x^2), Intercept =

14.17140, Slope1 = -7.525488, Slope2 = -0.6526698, and Slope3 = 1.001219

F = 557110918, R^2 = 1, Model is y~I(1/sqrt(x))+I(1/x^3)+I(x^2), Intercept =

14.32506, Slope1 = -7.886738, Slope2 = -0.4705604, and Slope3 = 1.000688

F = 258499620, R^2 = 1, Model is y~I(1/sqrt(x))+I(1/x)+I(x^2), Intercept =

13.69992, Slope1 = -5.692199, Slope2 = -1.990817, and Slope3 = 1.002158

F = 255565991, R^2 = 1, Model is y~I(1/x)+I(x^2)+I(sqrt(x)), Intercept =

9.701272, Slope1 = -4.66813, Slope2 = 0.9964237, and Slope3 = 0.952308

F = 66660631, R^2 = 1, Model is y~I(1/sqrt(x))+I(log(x))+I(x^2), Intercept =

17.25022, Slope1 = -11.21245, Slope2 = -0.9478255, and Slope3 = 1.004052

F = 65981677, R^2 = 1, Model is y~I(1/x)+x+I(x^2), Intercept = 10.70256,

Slope1 = -5.000611, Slope2 = 0.2737962, and Slope3 = 0.9893375

F = 43257973, R^2 = 0.9999999, Model is y~I(1/sqrt(x))+I(x^2)+I(sqrt(x)),

Intercept = 16.54472, Slope1 = -9.836476, Slope2 = 1.005920, and Slope3 = -

0.6621007

Page 29 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

F = 30963365, R^2 = 0.9999998, Model is y~I(1/sqrt(x))+x+I(x^2), Intercept =

15.59766, Slope1 = -9.380408, Slope2 = -0.1655957, and Slope3 = 1.009618

F = 20474489, R^2 = 0.9999997, Model is y~I(1/x^2)+I(log(x))+I(x^2),

Intercept = 7.8443, Slope1 = -1.925660, Slope2 = 1.967620, and Slope3 =

0.9950322

The function best.mlr2b() succeeds in identifying the correct model. Experiment with

introducing random errors in the data and then call the best-model selection function. Notice

whether or not other models start to compete with the original model as you increase the level of

errors.

A Second Generation
The next sections present a family of R functions that also perform best-model search but with a

different twist. This new generation of functions, which is a spinoff from the older ones, comes

in pairs. The first function in each pair writes the regression formulas to a text file. You can then

open that text file and edit its contents as follows:

 Eliminate models that you know are not suitable for the regression selection. This task

speeds up the search and eliminates the possibility of wading through ineligible (based on

your own definition and case study) models that might make it to the top of the best

models list.

 Add new models. You need to make sure that the new models conform to the style

appearing in the file. You must follow the same names of variables and should use the

same number of terms.

 Include custom values for scaling and shifting for specific models. Earlier in the tutorial I

mentioned that imposing values to shift and scale regression variables, across the board,

may put some of the models at a disadvantage. By targeting particular models and

injecting specific values for shifting and scaling, you have better chances in enhancing

these models. Even if your assessment for shifting and scaling variables is off, they will

affect only those models that you target.

The next table lists the set of functions that I present in the second half of this tutorial.

Table 3. The paired set of best-model search functions.

Name of R Function Total Number of

Variables

Scope of Model Search

write.best.lr() and

read.best.lr()

2 Searches for the best model:

fy(y) = a + b fx(x)

write.best.mlr1() and

read.best.mlr1()

3 Searches for the best model:

Page 30 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

Name of R Function Total Number of

Variables

Scope of Model Search

fy(y) = a + b fx1(x1) + c fx2(x2)

write.best.mlr1b() and

read.best.mlr1b()

2 Searches for the best model:

fy(y) = a + b fx1(x) + c fx2(x)

The functions fx1 and fx2 are different

transformations.

write.best.mlr2() and

read.best.mlr2()

4 Searches for the best model:

fy(y) = a + b fx1(x1) + c fx2(x2) + d fx3(x3)

write.best.mlr2b() and

read.best.mlr2b()

2 Searches for the best model:

fy(y) = a + b fx1(x) + c fx2(x) + d fx3(x)

The functions fx1, fx2, and fx3 are different

transformations.

So here we go!

The Functions write.best.lr() and

read.best.lr()
The Declaration of Function write.best.lr()
The function write.best.lr() writes the regression models to a files. The function read.best.lr()

reads these regression models and uses them with data to perform regression calculations. The

declaration for the write.best.lr() function is:

write.best.lr = function(name.x="x", name.y="y", outfile="C:/best.lr.dat")

The parameters name.x and name.y represent the names of the dependent and independent

variables, respectively. The parameter outfile is the output file. The function writes the list of

regression models (used later in calling function lm()) to the output file. It is important to point

out that the names specified by parameters name.x and name.y must be the same names of the

vectors that supply function read.best.lr() with data.

The Source Code
Here is the code for the function write.best.lr():

write.best.lr = function(name.x="x", name.y="y", outfile="C:/best.lr.dat")

{

Page 31 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 # setup the models for linearized regression.

 # write header

 cat("", sep="", file=outfile, append=FALSE)

 # write entries

 for (iy in -4:4) {

 for (ix in -4:4) {

 cat(say.fy(iy,name.y), "~", say.fx(ix,name.x),

 "\n", file=outfile, append=TRUE, sep="")

 }

 }

 cat("\n", file=outfile, append=TRUE)

 return (TRUE)

}

The Declaration of Function read.best.lr()
The declaration for function read.best.lr():

read.best.lr = function(x, y, quiet=FALSE,

 show.best=-1, infile=" C:/best.lr.dat",

 outfile="C:/best.lr.txt")

The parameters x and y are the data vectors. The arguments for these parameters must match the

names specified in calling function write.best.lr(). The parameters quiet is the quiet mode flag.

The parameter show.best tells the function how many best regression models to show. The

parameter infile specified the model input filename. The parameter outfile is the output

filename.

The Source Code
Here is the source code for function read.best.lr():

read.best.lr = function(x, y, quiet=FALSE,

 show.best=-1, infile=" C:/best.lr.dat",

 outfile="C:/best.lr.txt")

{

 # x and y are data vectors.

 # name.x is the name for argument for parameter x

 # name.y is the name for argument for parameter y

 # quiet is flag--when TRUE function generates no output

 # show.best specifies the number of best results to show.

 # Default shows all results

 # infile is the name of the file containing the transformations, shifting,

 # and scaling data

 # outfile is the output filename

 if (infile=="" | !file.exists(infile)) {

 cat("Input file does not exist. Function aborted.\n")

 return (FALSE)

 }

 # read the formulas from the file

Page 32 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 formula.vect = scan(file=infile, what=character(0))

 max.models=length(formula.vect)

 max.res=4

 # initialize variables used for results

 mat.res = matrix(rep(0,max.res*max.models), nrow=max.models, ncol=max.res)

 formula.arr=rep("", max.models)

 # initialize number of models found

 n.models = 0

 # iterate over the number of elements in vector index.x

 for (i in 1:max.models) {

 lr = 1 # assign a dummy value

 formula = as.character(formula.vect[i])

 # perform linearized regression

 lr = lm(formula)

 # call to function lm() succeeded?

 if (class(lr) == "lm") {

 # increment number of models

 n.models = n.models + 1

 # get the summary

 slr = summary(lr)

 # build matrix of results

 mat.res[n.models,1] = slr$fstatistic[1]

 mat.res[n.models,2] = slr$r.squared

 mat.res[n.models,3] = slr$coefficients[1]

 mat.res[n.models,4] = slr$coefficients[2]

 formula.arr[n.models] = formula

 }

 }

 # sort the results

 sort.order = order(mat.res[,1], decreasing=TRUE)

 for (i in 1:max.res)

 mat.res[,i] = mat.res[sort.order,i]

 formula.arr = formula.arr[sort.order]

 # store the results in a list

 list.res = list(mat=mat.res, form=formula.arr, nobs=length(y))

 # display the results?

 if(!quiet) show.results(list.res, show.best, outfile)

 return (list.res)

}

The function performs the following tasks:

1. Exits with a warning message if the parameter outfile is an empty string or refers to a

nonexistent file.

2. Reads the array of models and stores the array in vector formula.vect. This task uses function

scan() to read the formulas from the input file.

3. Calculates the number of models and stores it in variable max.model.

4. Assigns the number of results to variable max.res.

Page 33 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

5. Initializes the matrix mat.res and vector formula.arr that store the results.

6. Initializes the number of models.

7. Starts a loop to iterate over all the available models. The loop performs the following

subtasks:

7.1. Assigns a dummy scalar to variable lr.

7.2. Stores the current formula in the variable formula.

7.3. Performs the linearized regression for the current model. This task calls function

lm(formula) and stores the result in variable lr.

7.4. Determines if the class of variable lr is ―lm‖. If this condition is true, then the last task

was successful. The function increments the model counter (variable n.models) and then

obtains the summary of the regression variables lr and stores the F statistics, coefficient

of determination, the regression intercept, and the regression slope in the matrix mat.res.

The function also stores the current formula in vector formula.arr.

8. Sorts the data matrix mat.res and vector formula.arr, using the first column of matrix mat.res

as the sort key values.

9. Stores the matrix mat.res, the vector formula.arr, and the number of observations in the list

list.res.

10. Calls function show.results() to display the results if the value in parameter quiet is FALSE.

11. Returns the list list.res.

A Sample Run
Save the write.best.lr() and read.best.lr() functions to a script file and then load that file using the

source() function. Invoke the function write.best.lr() to write the regression models to file

C:\best.lr.dat by executing the following command:

> write.best.lr()

Open the file C:\best.lr.dat with a text editor. The first few lines should look like the following:

1/sqrt(y)~I(1/sqrt(x))

1/sqrt(y)~I(1/x^3)

1/sqrt(y)~I(1/x^2)

1/sqrt(y)~I(1/x)

1/sqrt(y)~I(log(x))

1/sqrt(y)~x

1/sqrt(y)~I(x^2)

1/sqrt(y)~I(x^3)

1/sqrt(y)~I(sqrt(x))

1/y^3~I(1/sqrt(x))

1/y^3~I(1/x^3)

1/y^3~I(1/x^2)

Locate the following line:

y~I(x^2)

Page 34 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

And edit that line to be as follows:

y~I(3*(x-1)^2)

The above task injects a shift values of -1 and a scale factor of 3 to the model y = a + b x^2,

making it y = a + b (3(x-1)^2).

Save the contents of the text file and close your text editor. Type in the following commands to

trigger the search for the best model using the models stored in file C:\best.lr.dat:

> x=runif(20,1,10)

> y=3*(x-1)^2-5

> lr.list = read.best.lr(x, y, show.best=10, infile="C:/best.lr.dat")

Read 81 items

Best 10 models

Number of observations = 20

F = 1.688182e+33, R^2 = 1, Model is y~I(3*(x-1)^2), Intercept = -5, and

Slope1 = 1

F = 6857.008, R^2 = 0.9978172, Model is sqrt(y)~x, Intercept = -2.964978, and

Slope1 = 1.854829

F = 5210.383, R^2 = 0.9971294, Model is sqrt(y)~I(sqrt(x)), Intercept = -

13.17484, and Slope1 = 8.930317

F = 1691.171, R^2 = 0.9894686, Model is y~I(x^3), Intercept = 5.849399, and

Slope1 = 0.2457168

F = 1372.676, R^2 = 0.9891906, Model is log(y)~I(1/x), Intercept = 7.113554,

and Slope1 = -16.83487

F = 694.4031, R^2 = 0.9747334, Model is y^2~I(x^3), Intercept = -3486.318,

and Slope1 = 54.39975

F = 672.9775, R^2 = 0.978197, Model is sqrt(y)~I(log(x)), Intercept = -

9.063916, and Slope1 = 10.23069

F = 583.2273, R^2 = 0.974926, Model is log(y)~I(1/x^2), Intercept = 5.480176,

and Slope1 = -33.29122

F = 554.0981, R^2 = 0.9736425, Model is log(y)~I(1/sqrt(x)), Intercept =

10.56956, and Slope1 = -15.75582

F = 361.1927, R^2 = 0.9601268, Model is sqrt(y)~I(x^2), Intercept = 2.220991,

and Slope1 = 0.1418674

There were 27 warnings (use warnings() to see them)

The first two commands create the data vectors. The model used to create the y vector is:

 y = 3(x-1)
2
 - 5

The third command invoke function read.best.lr(). Notice that the results show that the model

y~I(3*(x-1)^2) is the best one. This model has an intercept of -5 and a slope of 1. The value of 1

is correct since the best model includes a term with 3(x-1)
2
.

Page 35 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

The Functions write.best.mlr1() and

read.best.mlr1()
The Declaration of Function write.best.mlr1()

The function write.best.mlr1() writes the regression models for three variables to a files. The

function read.best.mlr1() reads these regression models and uses them with data to perform

regression calculations. The declaration for the write.best.mlr1() function is:

write.best.mlr1 = function(name.x1="x1", name.x2="x2",

 name.y="y", outfile="C:/best.mlr1.dat")

The parameters name.x1, name.x2, and name.y represent the names of the dependent and

independent variables. The parameter outfile is the output file. The function writes the list of

regression models (used later in calling function lm()) to the output file. It is important to point

out that the names specified by parameters name.x1, name.x2, and name.y must be the same

names of the vectors that supply function read.best.mlr1() with data.

The Source Code
Here is the code for the function write.best.mlr1():

write.best.mlr1 = function(name.x1="x1", name.x2="x2",

 name.y="y", outfile="C:/best.mlr1.dat")

{

 # setup the models for linearized regression.

 # write header

 cat("", sep="", file=outfile, append=FALSE)

 # write entries

 for (iy in -4:4) {

 for (ix1 in -4:4) {

 for (ix2 in -4:4) {

 cat(say.fy(iy,name.y), "~", say.fx(ix1,name.x1),

 "+", say.fx(ix2,name.x2),

 "\n", file=outfile, append=TRUE, sep="")

 }

 }

 }

 cat("\n", file=outfile, append=TRUE)

 return (TRUE)

}

The Declaration of Function read.best.mlr1()
The declaration for function read.best.mlr1():

read.best.mlr1 = function(x1, x2, y, quiet=FALSE,

Page 36 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 show.best=-1, infile="C:/best.mlr1.dat",

 outfile="C:/best.mlr1.txt")

The parameters x1, x2, and y are the data vectors. The arguments for these parameters must

match the names specified in calling function write.best.mlr1(). The parameters quiet is the quiet

mode flag. The parameter show.best tells the function how many best regression models to

show. The parameter infile specified the model input filename. The parameter outfile is the

output filename.

The Source Code
Here is the source code for function read.best.mlr1():

read.best.mlr1 = function(x1, x2, y, quiet=FALSE,

 show.best=-1, infile="C:/best.mlr1.dat",

outfile="C:/best.mlr1.txt")

{

 # x1, x2, and y are data vectors.

 # quiet is flag--when TRUE function generates no output

 # show.best specifies the number of best results to show.

 # Default shows all results

 # infile is the name of the file containing the transformations, shifting,

 # and scaling data

 # outfile is the output filename

 if (infile=="" | !file.exists(infile)) {

 cat("Input file does not exist. Function aborted.\n")

 return (FALSE)

 }

 # read the formulas from the file

 formula.vect = scan(file=infile, what=character(0))

 max.models=length(formula.vect)

 max.res=5

 # initialize variables used for results

 mat.res = matrix(rep(0,max.res*max.models), nrow=max.models, ncol=max.res)

 formula.arr=rep("", max.models)

 # initialize number of models found

 n.models = 0

 # iterate over the number of elements in vector index.x

 for (i in 1:max.models) {

 mlr = 1 # assign a dummy value

 formula = as.character(formula.vect[i])

 # perform linearized regression

 mlr = lm(formula)

 # call to function lm() succeeded?

 if (class(mlr) == "lm") {

 # increment number of models

 n.models = n.models + 1

 # get the summary

 slr = summary(mlr)

 # build matrix of results

 mat.res[n.models,1] = slr$fstatistic[1]

 mat.res[n.models,2] = slr$r.squared

Page 37 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 for (i in 1:3)

 mat.res[n.models,i+2] = slr$coefficients[i]

 formula.arr[n.models] = formula

 }

 }

 # sort the results

 sort.order = order(mat.res[,1], decreasing=TRUE)

 for (i in 1:max.res)

 mat.res[,i] = mat.res[sort.order,i]

 formula.arr = formula.arr[sort.order]

 # store the results in a list

 list.res = list(mat=mat.res, form=formula.arr, nobs=length(y))

 # display the results?

 if(!quiet) show.results(list.res, show.best, outfile)

 return (list.res)

}

The function performs the following tasks:

1. Exits with a warning message if the parameter outfile is an empty string or refers to a

nonexistent file.

2. Reads the array of models and stores the array in vector formula.vect. This task uses function

scan() to read the formulas from the input file.

3. Calculates the number of models and stores it in variable max.model.

4. Assigns the number of results to variable max.res.

5. Initializes the matrix mat.res and vector formula.arr that store the results.

6. Initializes the number of models.

7. Starts a loop to iterate over all the available models. The loop performs the following

subtasks:

7.1. Assigns a dummy scalar to variable mlr.

7.2. Stores the current formula in the variable formula.

7.3. Performs the linearized regression for the current model. This task calls function

lm(formula) and stores the result in variable mlr.

7.4. Determines if the class of variable mlr is ―lm‖. If this condition is true, then the last task

was successful. The function increments the model counter (variable n.models) and then

obtains the summary of the regression variables mlr and stores the F statistics,

coefficient of determination, the regression intercept, and the regression slopes in the

matrix mat.res. The function also stores the current formula in vector formula.arr.

8. Sorts the data matrix mat.res and vector formula.arr, using the first column of matrix mat.res

as the sort key values.

9. Stores the matrix mat.res, the vector formula.arr, and the number of observations in the list

list.res.

Page 38 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

10. Calls function show.results() to display the results if the value in parameter quiet is FALSE.

11. Returns the list list.res.

A Sample Run
Save the write.best.mlr1() and read.best.mlr1() functions to a script file and then load that file

using the source() function. Invoke the function write.best.mlr1() to write the regression models

to file C:\best.mlr1.dat by executing the following command:

> write.best.mlr1()

Open the file C:\best.mlr1.dat with a text editor. The first few lines should look like the

following:

1/sqrt(y)~I(1/sqrt(x1))+I(1/sqrt(x2))

1/sqrt(y)~I(1/sqrt(x1))+I(1/x2^3)

1/sqrt(y)~I(1/sqrt(x1))+I(1/x2^2)

1/sqrt(y)~I(1/sqrt(x1))+I(1/x2)

1/sqrt(y)~I(1/sqrt(x1))+I(log(x2))

1/sqrt(y)~I(1/sqrt(x1))+x2

1/sqrt(y)~I(1/sqrt(x1))+I(x2^2)

1/sqrt(y)~I(1/sqrt(x1))+I(x2^3)

1/sqrt(y)~I(1/sqrt(x1))+I(sqrt(x2))

1/sqrt(y)~I(1/x1^3)+I(1/sqrt(x2))

1/sqrt(y)~I(1/x1^3)+I(1/x2^3)

1/sqrt(y)~I(1/x1^3)+I(1/x2^2)

Type in the following commands to trigger the search for the best model using the models stored

in file C:\best.mlr1.dat:

> x1=runif(20,2,10)

> x2=runif(20,0.1,1)

> y=10+2*log(x1)-5/x2

> mlr1.list = read.best.mlr1(x1,x2,y,show.best=10, infile="C:/best.mlr1.dat")

Read 729 items

Best 10 models

Number of observations = 20

F = 1.933720e+32, R^2 = 1, Model is y~I(log(x1))+I(1/x2), Intercept = 10,

Slope1 = 2, and Slope2 = -5

F = 182338.3, R^2 = 0.9999534, Model is y~I(sqrt(x1))+I(1/x2), Intercept =

9.299606, Slope1 = 1.722137, and Slope2 = -4.998122

F = 181608.6, R^2 = 0.9999532, Model is y~I(1/sqrt(x1))+I(1/x2), Intercept =

17.28138, Slope1 = -8.905054, and Slope2 = -5.002794

F = 47129.23, R^2 = 0.9998197, Model is y~x1+I(1/x2), Intercept = 11.31914,

Slope1 = 0.355858, and Slope2 = -4.997079

F = 46880.65, R^2 = 0.9998187, Model is y~I(1/x1)+I(1/x2), Intercept =

15.28458, Slope1 = -9.504124, and Slope2 = -5.006428

F = 13321.16, R^2 = 0.9993623, Model is y~I(1/x1^2)+I(1/x2), Intercept =

14.31233, Slope1 = -19.29295, and Slope2 = -5.015226

F = 13234.67, R^2 = 0.9993582, Model is y~I(x1^2)+I(1/x2), Intercept =

12.36905, Slope1 = 0.02721633, and Slope2 = -4.996697

Page 39 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

F = 7177.315, R^2 = 0.9988171, Model is y~I(1/x1^3)+I(1/x2), Intercept =

14.02298, Slope1 = -46.1872, and Slope2 = -5.024046

F = 6926.138, R^2 = 0.9987743, Model is y~I(x1^3)+I(1/x2), Intercept =

12.75296, Slope1 = 0.002461737, and Slope2 = -4.997191

F = 1631.578, R^2 = 0.9966404, Model is sqrt(y)~I(log(x1))+I(1/x2^2),

Intercept = 2.46595, Slope1 = 0.4297847, and Slope2 = -0.3398041

There were 50 or more warnings (use warnings() to see the first 50)

The first two commands create the data vectors. The third command invoke function

read.best.mlr1(). The function locates the best model based on the actual data as defined in the

third command.

The Functions write.best.mlr1b() and

read.best.mlr1b()
The Declaration of Function write.best.mlr1b()

The function write.best.mlr1b() writes the regression models for two variables to a files. The

function read.best.mlr1b() reads these regression models and uses them with data to perform

regression calculations. The declaration for the write.best.mlr1b() function is:

write.best.mlr1b = function(name.x="x", name.y="y",

 outfile="C:/best.mlr1b.dat")

The parameters name.x and name.y represent the names of the dependent and independent

variables. The parameter outfile is the output file. The function writes the list of regression

models (used later in calling function lm()) to the output file. It is important to point out that the

names specified by parameters name.x and name.y must be the same names of the vectors that

supply function read.best.mlr1b() with data.

The Source Code
Here is the code for the function write.best.mlr1b():

write.best.mlr1b = function(name.x="x", name.y="y",

 outfile="C:/best.mlr1b.dat")

{

 # setup the models for linearized regression.

 # write header

 cat("", sep="", file=outfile, append=FALSE)

 # write entries

 for (iy in -4:4) {

 for (ix1 in -4:4) {

 for (ix2 in ix1:4) {

 if (ix1 != ix2) {

 cat(say.fy(iy, name.y), "~", say.fx(ix1, name.x),

Page 40 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 "+", say.fx(ix2, name.x),

 "\n", file=outfile, append=TRUE, sep="")

 }

 }

 }

 }

 cat("\n", file=outfile, append=TRUE)

 return (TRUE)

}

The Declaration of Function read.best.mlr1b()
The declaration for function read.best.mlr1b():

read.best.mlr1b = function(x, y, quiet=FALSE,

 show.best=-1, infile="C:/best.mlr1b.dat",

 outfile="C:/best.mlr1b.txt")

The parameters x and y are the data vectors. The arguments for these parameters must match the

names specified in calling function write.best.mlr1b(). The parameters quiet is the quiet mode

flag. The parameter show.best tells the function how many best regression models to show. The

parameter infile specified the model input filename. The parameter outfile is the output

filename.

The Source Code
Here is the source code for function read.best.mlr1b():

read.best.mlr1b = function(x, y, quiet=FALSE,

 show.best=-1, infile="C:/best.mlr1b.dat",

 outfile="C:/best.mlr1b.txt")

{

 # x and y are data vectors.

 # quiet is flag--when TRUE function generates no output

 # show.best specifies the number of best results to show.

 # Default shows all results

 # infile is the name of the file containing the transformations, shifting,

 # and scaling data

 # outfile is the output filename

 if (infile=="" | !file.exists(infile)) {

 cat("Input file does not exist. Function aborted.\n")

 return (FALSE)

 }

 # read the formulas from the file

 formula.vect = scan(file=infile, what=character(0))

 max.models=length(formula.vect)

 max.res=5

 # initialize variables used for results

 mat.res = matrix(rep(0,max.res*max.models), nrow=max.models, ncol=max.res)

 formula.arr=rep("", max.models)

 # initialize number of models found

 n.models = 0

 # iterate over the number of elements in vector index.x

Page 41 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 for (i in 1:max.models) {

 mlr = 1 # assign a dummy value

 formula = as.character(formula.vect[i])

 # perform linearized regression

 mlr = lm(formula)

 # call to function lm() succeeded?

 if (class(mlr) == "lm") {

 # increment number of models

 n.models = n.models + 1

 # get the summary

 slr = summary(mlr)

 # build matrix of results

 mat.res[n.models,1] = slr$fstatistic[1]

 mat.res[n.models,2] = slr$r.squared

 for (i in 1:3)

 mat.res[n.models,i+2] = slr$coefficients[i]

 formula.arr[n.models] = formula

 }

 }

 # sort the results

 sort.order = order(mat.res[,1], decreasing=TRUE)

 for (i in 1:max.res)

 mat.res[,i] = mat.res[sort.order,i]

 formula.arr = formula.arr[sort.order]

 # store the results in a list

 list.res = list(mat=mat.res, form=formula.arr, nobs=length(y))

 # display the results?

 if(!quiet) show.results(list.res, show.best, outfile)

 return (list.res)

}

The function performs the following tasks:

1. Exits with a warning message if the parameter outfile is an empty string or refers to a

nonexistent file.

2. Reads the array of models and stores the array in vector formula.vect. This task uses function

scan() to read the formulas from the input file.

3. Calculates the number of models and stores it in variable max.model.

4. Assigns the number of results to variable max.res.

5. Initializes the matrix mat.res and vector formula.arr that store the results.

6. Initializes the number of models.

7. Starts a loop to iterate over all the available models. The loop performs the following

subtasks:

7.1. Assigns a dummy scalar to variable mlr.

7.2. Stores the current formula in the variable formula.

Page 42 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

7.3. Performs the linearized regression for the current model. This task calls function

lm(formula) and stores the result in variable mlr.

7.4. Determines if the class of variable mlr is ―lm‖. If this condition is true, then the last task

was successful. The function increments the model counter (variable n.models) and then

obtains the summary of the regression variables mlr and stores the F statistics,

coefficient of determination, the regression intercept, and the regression slopes in the

matrix mat.res. The function also stores the current formula in vector formula.arr.

8. Sorts the data matrix mat.res and vector formula.arr, using the first column of matrix mat.res

as the sort key values.

9. Stores the matrix mat.res, the vector formula.arr, and the number of observations in the list

list.res.

10. Calls function show.results() to display the results if the value in parameter quiet is FALSE.

11. Returns the list list.res.

A Sample Run
Save the write.best.mlr1b() and read.best.mlr1b() functions to a script file and then load that file

using the source() function. Invoke the function write.best.mlr1b() to write the regression models

to file C:\best.mlr1b.dat by executing the following command:

> write.best.mlr1b()

Open the file C:\best.mlr1b.dat with a text editor. The first few lines should look like the

following:

1/sqrt(y)~I(1/sqrt(x))+I(1/x^3)

1/sqrt(y)~I(1/sqrt(x))+I(1/x^2)

1/sqrt(y)~I(1/sqrt(x))+I(1/x)

1/sqrt(y)~I(1/sqrt(x))+I(log(x))

1/sqrt(y)~I(1/sqrt(x))+x

1/sqrt(y)~I(1/sqrt(x))+I(x^2)

1/sqrt(y)~I(1/sqrt(x))+I(x^3)

1/sqrt(y)~I(1/sqrt(x))+I(sqrt(x))

1/sqrt(y)~I(1/x^3)+I(1/x^2)

1/sqrt(y)~I(1/x^3)+I(1/x)

1/sqrt(y)~I(1/x^3)+I(log(x))

1/sqrt(y)~I(1/x^3)+x

1/sqrt(y)~I(1/x^3)+I(x^2)

1/sqrt(y)~I(1/x^3)+I(x^3)

Type in the following commands to trigger the search for the best model using the models stored

in file C:\best.mlr1b.dat:

> x=runif(20,2,10)

> y=10+2*log(x)-5/x

> mlr1b.list = read.best.mlr1b(x, y,show.best=10, infile="C:/best.mlr1b.dat")

Read 324 items

Best 10 models

Page 43 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

Number of observations = 20

F = 2.55444e+31, R^2 = 1, Model is y~I(1/x)+I(log(x)), Intercept = 10, Slope1

= -5, and Slope2 = 2

F = 26773360, R^2 = 0.9999997, Model is y^2~I(1/sqrt(x))+I(log(x)), Intercept

= 76.63747, Slope1 = -56.40767, and Slope2 = 60.82328

F = 26553765, R^2 = 0.9999997, Model is y^3~I(1/sqrt(x))+I(log(x)), Intercept

= -1927.299, Slope1 = 1964.51, and Slope2 = 1785.043

F = 22149818, R^2 = 0.9999996, Model is y^2~I(1/x)+I(log(x)), Intercept =

46.66905, Slope1 = -29.41601, and Slope2 = 67.41334

F = 7996046, R^2 = 0.999999, Model is y~I(1/sqrt(x))+x, Intercept = 17.30283,

Slope1 = -12.05312, and Slope2 = 0.06149608

F = 7013914, R^2 = 0.9999988, Model is log(y)~I(1/x)+I(sqrt(x)), Intercept =

2.549257, Slope1 = -0.8931135, and Slope2 = 0.05921979

F = 3728393, R^2 = 0.9999977, Model is sqrt(y)~I(1/x)+I(log(x)), Intercept =

3.32907, Slope1 = -1.006947, and Slope2 = 0.2287091

F = 1864052, R^2 = 0.9999954, Model is 1/sqrt(y)~I(1/sqrt(x))+I(1/x^3),

Intercept = 0.2199143, Slope1 = 0.1462053, and Slope2 = 0.1018720

F = 1842571, R^2 = 0.9999954, Model is y^3~I(1/x)+I(log(x)), Intercept = -

882.4722, Slope1 = 1022.53, and Slope2 = 1555.099

F = 1716155, R^2 = 0.999995, Model is log(y)~I(1/sqrt(x))+I(1/x^3), Intercept

= 2.982848, Slope1 = -1.06629, and Slope2 = -0.3540008

The first two commands create the data vectors. The third command invoke function

read.best.mlr1b(). The function locates the best model based on the actual data as defined in the

second command.

The Functions write.best.mlr2() and

read.best.mlr2()
The Declaration of Function write.best.mlr2()
The function write.best.mlr2() writes the regression models for four variables to a files. The

function read.best.mlr2() reads these regression models and uses them with data to perform

regression calculations. The declaration for the write.best.mlr2() function is:

write.best.mlr2 = function(name.x1="x1", name.x2="x2", name.x3="x3",

 name.y="y", outfile="C:/best.mlr2.dat")

The parameters name.x1, name.x2, name.x3, and name.y represent the names of the dependent

and independent variables. The parameter outfile is the output file. The function writes the list of

regression models (used later in calling function lm()) to the output file. It is important to point

out that the names specified by parameters name.x1, name.x2, name.x3, and name.y must be the

same names of the vectors that supply function read.best.mlr2() with data.

The Source Code
Here is the code for the function write.best.mlr2():

Page 44 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

write.best.mlr2 = function(name.x1="x1", name.x2="x2", name.x3="x3",

 name.y="y", outfile="C:/best.mlr2.dat")

{

 # setup the models for linearized regression.

 # write header

 cat("", sep="", file=outfile, append=FALSE)

 # write entries

 for (iy in -4:4) {

 for (ix1 in -4:4) {

 for (ix2 in -4:4) {

 for (ix3 in -4:4) {

 cat(say.fy(iy,name.y), "~", say.fx(ix1,name.x1),

 "+", say.fx(ix2,name.x2),

 "+", say.fx(ix3,name.x3),

 "\n", file=outfile, append=TRUE, sep="")

 }

 }

 }

 }

 cat("\n", file=outfile, append=TRUE)

 return (TRUE)

}

The Declaration of Function read.best.mlr2()
The declaration for function read.best.mlr2():

read.best.mlr2 = function(x1, x2, x3, y, quiet=FALSE,

 show.best=-1, infile="C:/best.mlr2.dat",

 outfile="C:/best.mlr2.txt")

The parameters x1, x2, x3, and y are the data vectors. The arguments for these parameters must

match the names specified in calling function write.best.mlr2(). The parameters quiet is the quiet

mode flag. The parameter show.best tells the function how many best regression models to

show. The parameter infile specified the model input filename. The parameter outfile is the

output filename.

The Source Code
Here is the source code for function read.best.mlr2():

read.best.mlr2 = function(x1, x2, x3, y, quiet=FALSE,

 show.best=-1, infile="C:/best.mlr2.dat",

 outfile="C:/best.mlr2.txt")

{

 # x1, x2, x3, and y are data vectors.

 # name.x1 is the name for argument for parameter x1

 # name.x2 is the name for argument for parameter x2

 # name.x3 is the name for argument for parameter x2

 # name.y is the name for argument for parameter y

 # quiet is flag--when TRUE function generates no output

 # show.best specifies the number of best results to show.

Page 45 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 # Default shows all results

 # infile is the name of the file containing the transformations, shifting,

 # and scaling data

 # outfile is the output filename

 if (infile=="" | !file.exists(infile)) {

 cat("Input file does not exist. Function aborted.\n")

 return (FALSE)

 }

 # read the formulas from the file

 formula.vect = scan(file=infile, what=character(0))

 max.models=length(formula.vect)

 max.res=6

 # initialize variables used for results

 mat.res = matrix(rep(0,max.res*max.models), nrow=max.models, ncol=max.res)

 formula.arr=rep("", max.models)

 # initialize number of models found

 n.models = 0

 # iterate over the number of elements in vector index.x

 for (i in 1:max.models) {

 mlr = 1 # assign a dummy value

 formula = as.character(formula.vect[i])

 # perform linearized regression

 mlr = lm(formula)

 # call to function lm() succeeded?

 if (class(mlr) == "lm") {

 # increment number of models

 n.models = n.models + 1

 # get the summary

 slr = summary(mlr)

 # build matrix of results

 mat.res[n.models,1] = slr$fstatistic[1]

 mat.res[n.models,2] = slr$r.squared

 for (i in 1:4)

 mat.res[n.models,i+2] = slr$coefficients[i]

 formula.arr[n.models] = formula

 }

 }

 # sort the results

 sort.order = order(mat.res[,1], decreasing=TRUE)

 for (i in 1:max.res)

 mat.res[,i] = mat.res[sort.order,i]

 formula.arr = formula.arr[sort.order]

 # store the results in a list

 list.res = list(mat=mat.res, form=formula.arr, nobs=length(y))

 # display the results?

 if(!quiet) show.results(list.res, show.best, outfile)

 return (list.res)

}

The function performs the following tasks:

Page 46 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

1. Exits with a warning message if the parameter outfile is an empty string or refers to a

nonexistent file.

2. Reads the array of models and stores the array in vector formula.vect. This task uses function

scan() to read the formulas from the input file.

3. Calculates the number of models and stores it in variable max.model.

4. Assigns the number of results to variable max.res.

5. Initializes the matrix mat.res and vector formula.arr that store the results.

6. Initializes the number of models.

7. Starts a loop to iterate over all the available models. The loop performs the following

subtasks:

7.1. Assigns a dummy scalar to variable mlr.

7.2. Stores the current formula in the variable formula.

7.3. Performs the linearized regression for the current model. This task calls function

lm(formula) and stores the result in variable mlr.

7.4. Determines if the class of variable mlr is ―lm‖. If this condition is true, then the last task

was successful. The function increments the model counter (variable n.models) and then

obtains the summary of the regression variables mlr and stores the F statistics,

coefficient of determination, the regression intercept, and the regression slopes in the

matrix mat.res. The function also stores the current formula in vector formula.arr.

8. Sorts the data matrix mat.res and vector formula.arr, using the first column of matrix mat.res

as the sort key values.

9. Stores the matrix mat.res, the vector formula.arr, and the number of observations in the list

list.res.

10. Calls function show.results() to display the results if the value in parameter quiet is FALSE.

11. Returns the list list.res.

A Sample Run
Save the write.best.mlr2() and read.best.mlr2() functions to a script file and then load that file

using the source() function. Invoke the function write.best.mlr2() to write the regression models

to file C:\best.mlr2.dat by executing the following command:

> write.best.mlr2()

Open the file C:\best.mlr2.dat with a text editor. The first few lines should look like the

following:

1/sqrt(y)~I(1/sqrt(x1))+I(1/sqrt(x2))+I(1/sqrt(x3))

1/sqrt(y)~I(1/sqrt(x1))+I(1/sqrt(x2))+I(1/x3^3)

1/sqrt(y)~I(1/sqrt(x1))+I(1/sqrt(x2))+I(1/x3^2)

1/sqrt(y)~I(1/sqrt(x1))+I(1/sqrt(x2))+I(1/x3)

1/sqrt(y)~I(1/sqrt(x1))+I(1/sqrt(x2))+I(log(x3))

1/sqrt(y)~I(1/sqrt(x1))+I(1/sqrt(x2))+x3

1/sqrt(y)~I(1/sqrt(x1))+I(1/sqrt(x2))+I(x3^2)

Page 47 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

1/sqrt(y)~I(1/sqrt(x1))+I(1/sqrt(x2))+I(x3^3)

1/sqrt(y)~I(1/sqrt(x1))+I(1/sqrt(x2))+I(sqrt(x3))

1/sqrt(y)~I(1/sqrt(x1))+I(1/x2^3)+I(1/sqrt(x3))

1/sqrt(y)~I(1/sqrt(x1))+I(1/x2^3)+I(1/x3^3)

1/sqrt(y)~I(1/sqrt(x1))+I(1/x2^3)+I(1/x3^2)

1/sqrt(y)~I(1/sqrt(x1))+I(1/x2^3)+I(1/x3)

1/sqrt(y)~I(1/sqrt(x1))+I(1/x2^3)+I(log(x3))

1/sqrt(y)~I(1/sqrt(x1))+I(1/x2^3)+x3

1/sqrt(y)~I(1/sqrt(x1))+I(1/x2^3)+I(x3^2)

1/sqrt(y)~I(1/sqrt(x1))+I(1/x2^3)+I(x3^3)

1/sqrt(y)~I(1/sqrt(x1))+I(1/x2^3)+I(sqrt(x3))

1/sqrt(y)~I(1/sqrt(x1))+I(1/x2^2)+I(1/sqrt(x3))

Type in the following commands to trigger the search for the best model using the models stored

in file C:\best.mlr2.dat:

> x1=runif(20,1,10)

> x2=runif(20,1,10)

> x3=runif(20,10,100)

> y=10+x1^2-4/x2+log(x3)

> mlr2.lst = read.best.mlr2(x1,x2,x3,y,show.best=10)

Read 6561 items

Best 10 models

Number of observations = 20

F = 2.489478e+32, R^2 = 1, Model is y~I(x1^2)+I(1/x2)+I(log(x3)), Intercept =

10, Slope1 = 1, Slope2 = -4, and Slope3 = 1

F = 3134918, R^2 = 0.9999983, Model is y~I(x1^2)+I(1/x2)+I(1/sqrt(x3)),

Intercept = 15.84792, Slope1 = 1.000514, Slope2 = -4.038379, and Slope3 = -

13.30377

F = 2967565, R^2 = 0.9999982, Model is y~I(x1^2)+I(1/x2)+I(sqrt(x3)),

Intercept = 11.82381, Slope1 = 0.9995311, Slope2 = -3.969937, and Slope3 =

0.2874713

F = 1854936, R^2 = 0.9999971, Model is y~I(x1^2)+I(1/sqrt(x2))+I(log(x3)),

Intercept = 10.89389, Slope1 = 1.000469, Slope2 = -4.118693, and Slope3 =

1.016618

F = 1682527, R^2 = 0.9999968, Model is y~I(x1^2)+I(1/sqrt(x2))+I(1/sqrt(x3)),

Intercept = 16.86046, Slope1 = 1.000987, Slope2 = -4.170913, and Slope3 = -

13.56957

F = 881258, R^2 = 0.999994, Model is y~I(x1^2)+I(1/sqrt(x2))+I(sqrt(x3)),

Intercept = 12.74156, Slope1 = 0.9999996, Slope2 = -4.075698, and Slope3 =

0.2913848

F = 833095, R^2 = 0.9999936, Model is y~I(x1^2)+I(1/x2)+I(1/x3), Intercept =

14.86380, Slope1 = 1.001032, Slope2 = -4.08376, and Slope3 = -42.39287

F = 817006, R^2 = 0.9999935, Model is y~I(x1^2)+I(1/sqrt(x2))+I(1/x3),

Intercept = 15.87669, Slope1 = 1.001514, Slope2 = -4.230354, and Slope3 = -

43.39327

F = 749183.9, R^2 = 0.9999929, Model is y~I(x1^2)+I(1/x2)+x3, Intercept =

12.81644, Slope1 = 0.999143, Slope2 = -3.947637, and Slope3 = 0.01975666

F = 734049.5, R^2 = 0.9999927, Model is y~I(x1^2)+I(1/x2^2)+I(sqrt(x3)),

Intercept = 11.44787, Slope1 = 0.9985698, Slope2 = -6.434313, and Slope3 =

0.2828081

Page 48 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

The first two commands create the data vectors. The third command invoke function

read.best.mlr2(). The function locates the best model based on the actual data as defined in the

fourth command.

The Functions write.best.mlr2b() and

read.best.mlr2b()
The Declaration of Function write.best.mlr2b()

The function write.best.mlr2b() writes the regression models for two variables to a files. The

function read.best.mlr2b() reads these regression models and uses them with data to perform

regression calculations. The declaration for the write.best.mlr2b() function is:

write.best.mlr2b = function(name.x="x", name.y="y",

 outfile="C:/best.mlr2b.dat")

The parameters name.x and name.y represent the names of the dependent and independent

variables. The parameter outfile is the output file. The function writes the list of regression

models (used later in calling function lm()) to the output file. It is important to point out that the

names specified by parameters name.x and name.y must be the same names of the vectors that

supply function read.best.mlr2b() with data.

The Source Code
Here is the code for the function write.best.mlr2b():

write.best.mlr2b = function(name.x="x", name.y="y",

 outfile="C:/best.mlr2b.dat")

{

 # setup the models for linearized regression.

 # write header

 cat("", sep="", file=outfile, append=FALSE)

 # write entries

 for (iy in -4:4) {

 for (ix1 in -4:4) {

 for (ix2 in ix1:4) {

 if (ix1 != ix2) {

 for (ix3 in ix2:4) {

 if (ix3 != ix2) {

 cat(say.fy(iy, name.y), "~", say.fx(ix1, name.x),

 "+", say.fx(ix2, name.x),

 "+", say.fx(ix3, name.x),

 "\n", file=outfile, append=TRUE, sep="")

 }

 }

 }

Page 49 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 }

 }

 }

 cat("\n", file=outfile, append=TRUE)

 return (TRUE)

}

The Declaration of Function read.best.mlr2b()
The declaration for function read.best.mlr2b():

read.best.mlr2b = function(x, y, quiet=FALSE,

 show.best=-1, infile="C:/best.mlr2b.dat",

 outfile="C:/best.mlr2b.txt")

The parameters x and y are the data vectors. The arguments for these parameters must match the

names specified in calling function write.best.mlr2b(). The parameters quiet is the quiet mode

flag. The parameter show.best tells the function how many best regression models to show. The

parameter infile specified the model input filename. The parameter outfile is the output

filename.

The Source Code
Here is the source code for function read.best.mlr2b():

read.best.mlr2b = function(x, y, quiet=FALSE,

 show.best=-1, infile="C:/best.mlr2b.dat",

outfile="C:/best.mlr2b.txt")

{

 # x and y are data vectors.

 # quiet is flag--when TRUE function generates no output

 # show.best specifies the number of best results to show. Default shows all

results

 # infile is the name of the file containing the transformations, shifting,

 # and scaling data

 # outfile is the output filename

 if (infile=="" | !file.exists(infile)) {

 cat("Input file does not exist. Function aborted.\n")

 return (FALSE)

 }

 # read the formulas from the file

 formula.vect = scan(file=infile, what=character(0))

 max.models=length(formula.vect)

 max.res=6

 # initialize variables used for results

 mat.res = matrix(rep(0,max.res*max.models), nrow=max.models, ncol=max.res)

 formula.arr=rep("", max.models)

 # initialize number of models found

 n.models = 0

 # iterate over the number of elements in vector index.x

 for (i in 1:max.models) {

 mlr = 1 # assign a dummy value

Page 50 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 formula = as.character(formula.vect[i])

 # perform linearized regression

 mlr = lm(formula)

 # call to function lm() succeeded?

 if (class(mlr) == "lm") {

 # increment number of models

 n.models = n.models + 1

 # get the summary

 slr = summary(mlr)

 # build matrix of results

 mat.res[n.models,1] = slr$fstatistic[1]

 mat.res[n.models,2] = slr$r.squared

 for (i in 1:4)

 mat.res[n.models,i+2] = slr$coefficients[i]

 formula.arr[n.models] = formula

 }

 }

 # sort the results

 sort.order = order(mat.res[,1], decreasing=TRUE)

 for (i in 1:max.res)

 mat.res[,i] = mat.res[sort.order,i]

 formula.arr = formula.arr[sort.order]

 # store the results in a list

 list.res = list(mat=mat.res, form=formula.arr, nobs=length(y))

 # display the results?

 if(!quiet) show.results(list.res, show.best, outfile)

 return (list.res)

}

The function performs the following tasks:

1. Exits with a warning message if the parameter outfile is an empty string or refers to a

nonexistent file.

2. Reads the array of models and stores the array in vector formula.vect. This task uses function

scan() to read the formulas from the input file.

3. Calculates the number of models and stores it in variable max.model.

4. Assigns the number of results to variable max.res.

5. Initializes the matrix mat.res and vector formula.arr that store the results.

6. Initializes the number of models.

7. Starts a loop to iterate over all the available models. The loop performs the following

subtasks:

7.1. Assigns a dummy scalar to variable mlr.

7.2. Stores the current formula in the variable formula.

7.3. Performs the linearized regression for the current model. This task calls function

lm(formula) and stores the result in variable mlr.

Page 51 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

7.4. Determines if the class of variable mlr is ―lm‖. If this condition is true, then the last task

was successful. The function increments the model counter (variable n.models) and then

obtains the summary of the regression variables mlr and stores the F statistics,

coefficient of determination, the regression intercept, and the regression slopes in the

matrix mat.res. The function also stores the current formula in vector formula.arr.

8. Sorts the data matrix mat.res and vector formula.arr, using the first column of matrix mat.res

as the sort key values.

9. Stores the matrix mat.res, the vector formula.arr, and the number of observations in the list

list.res.

10. Calls function show.results() to display the results if the value in parameter quiet is FALSE.

11. Returns the list list.res.

A Sample Run
Save the write.best.mlr2b() and read.best.mlr2b() functions to a script file and then load that file

using the source() function. Invoke the function write.best.mlr2b() to write the regression models

to file C:\best.mlr2b.dat by executing the following command:

> write.best.mlr2b()

Open the file C:\best.mlr2b.dat with a text editor. The first few lines should look like the

following:

1/sqrt(y)~I(1/sqrt(x))+I(1/x^3)+I(1/x^2)

1/sqrt(y)~I(1/sqrt(x))+I(1/x^3)+I(1/x)

1/sqrt(y)~I(1/sqrt(x))+I(1/x^3)+I(log(x))

1/sqrt(y)~I(1/sqrt(x))+I(1/x^3)+x

1/sqrt(y)~I(1/sqrt(x))+I(1/x^3)+I(x^2)

1/sqrt(y)~I(1/sqrt(x))+I(1/x^3)+I(x^3)

1/sqrt(y)~I(1/sqrt(x))+I(1/x^3)+I(sqrt(x))

1/sqrt(y)~I(1/sqrt(x))+I(1/x^2)+I(1/x)

1/sqrt(y)~I(1/sqrt(x))+I(1/x^2)+I(log(x))

1/sqrt(y)~I(1/sqrt(x))+I(1/x^2)+x

1/sqrt(y)~I(1/sqrt(x))+I(1/x^2)+I(x^2)

1/sqrt(y)~I(1/sqrt(x))+I(1/x^2)+I(x^3)

1/sqrt(y)~I(1/sqrt(x))+I(1/x^2)+I(sqrt(x))

1/sqrt(y)~I(1/sqrt(x))+I(1/x)+I(log(x))

1/sqrt(y)~I(1/sqrt(x))+I(1/x)+x

Type in the following commands to trigger the search for the best model using the models stored

in file C:\best.mlr2b.dat:

> x=runif(20,1,10)

> y=10+2*x^2-4/x-5*log(x)

> mlr2b.lst = read.best.mlr2b(x,y,show.best=10)

Read 756 items

Best 10 models

Number of observations = 20

Page 52 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

F = 3.574931e+32, R^2 = 1, Model is y~I(1/x)+I(log(x))+I(x^2), Intercept =

10, Slope1 = -4, Slope2 = -5, and Slope3 = 2

F = 1379518187, R^2 = 1, Model is y~I(1/sqrt(x))+I(log(x))+I(x^2), Intercept

= 16.15292, Slope1 = -10.01027, Slope2 = -6.572589, and Slope3 = 2.002408

F = 370119276, R^2 = 1, Model is y~I(1/x^2)+I(log(x))+I(x^2), Intercept =

8.120245, Slope1 = -2.528048, Slope2 = -4.227334, and Slope3 = 1.997126

F = 215145200, R^2 = 1, Model is y~I(x^2)+I(x^3)+I(sqrt(x)), Intercept =

10.86291, Slope1 = 2.020463, Slope2 = -0.0004533956, and Slope3 = -4.540419

F = 182362886, R^2 = 1, Model is y~x+I(x^2)+I(x^3), Intercept = 8.055372,

Slope1 = -2.074806, Slope2 = 2.169127, and Slope3 = -0.006176907

F = 172616379, R^2 = 1, Model is y~x+I(x^2)+I(sqrt(x)), Intercept = 11.00627,

Slope1 = 0.1281340, Slope2 = 2.009855, and Slope3 = -4.796334

F = 155926296, R^2 = 1, Model is y~I(log(x))+I(x^2)+I(sqrt(x)), Intercept =

10.48292, Slope1 = -0.2221863, Slope2 = 2.012420, and Slope3 = -4.143856

F = 149296675, R^2 = 1, Model is y~I(1/sqrt(x))+I(x^2)+I(sqrt(x)), Intercept

= 10.33505, Slope1 = 0.3102624, Slope2 = 2.012910, and Slope3 = -4.304906

F = 143827519, R^2 = 1, Model is y~I(1/x)+I(x^2)+I(sqrt(x)), Intercept =

10.55570, Slope1 = 0.1437788, Slope2 = 2.013223, and Slope3 = -4.357676

F = 137847112, R^2 = 1, Model is y~I(1/sqrt(x))+I(1/x)+I(x^2), Intercept = -

9.512804, Slope1 = 31.66601, Slope2 = -16.59026, and Slope3 = 1.992203

The first two commands create the data vectors. The third command invoke function

read.best.mlr2b(). The function locates the best model based on the actual data as defined in the

second command.

Best-Model Test Cases
This section is an optional bonus and marks the end of the tutorial part of this document. Here I

apply the functions best.lr(), best.mlr1(), best.mlr1b(), best.mlr2(), and best.ml2b() to determine

the best models that can approximate the inverse statistical distributions for the Normal, Student-

t, Chi-square, and F distributions. Please keep in mind that the results are not the fruit of a

thorough search that involves experimenting with a wide variety of empirical relations. The

result that you see are what the best of functions best.lr(), best.mlr1(), best.mlr1b(), best.mlr2(),

and best.ml2b() can produce. My experience in finding new empirical approximations to popular

inverse distributions shows that for these approximations to be taken seriously, their curves have

to yield R
2
 values with several nines after the decimal places! Otherwise, these approximations

may fail when a calculated statistic comes very close to an inverse distribution value--the error

from the approximation may throw off a researcher in accepting or rejecting a hypothesis, when

the reverse conclusion is true!

Before we start make sure that the functions best.lr(), best.mlr1(),best.mlr1b(), best.mlr2(), and

best.ml2b(), along with their helper functions are already loaded in the workspace. You may

want to copy all of these functions and store them in a single script file. It becomes easier to load

just one script file before you follow the instructions in this section. It is also easier to append to

such a script file the test commands that you will see in the next sections.

Page 53 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

The Best Model to Approximate the Inverse Normal Distribution

Tested Models

The first test tackles the inverse Normal distribution. The test covers the confidence level values

in the range of 0.8 to 0.99, in increments of 0.01. The categories of models tested are:

 f0(Qinv) = A + B f1(p) (1)

 f0(Qinv) = A + B f1(p) + C f2(p) (2)

 f0(Qinv) = A + B f1(p) + C f2(p) + D f3(p) (3)

Where p is the confidence level.

Test Code

Execute the following commands to initialize the data and perform the best-model selection. I

suggest that you type in the commands in a script window, select these commands, and then

execute them by pressing the CTRL+R keys:

options(digits=10)

p = seq(0.8, 0.99, 0.01)

y = qnorm(p)

dummy = best.lr(p, y, name.x="p", name.y="y", show.best=10)

dummy = best.mlr1b(p, y, name.x="p", name.y="y", show.best=10)

dummy = best.mlr2b(p, y, name.x="p", name.y="y", show.best=10)

The Results

Here is the output generated by the above commands:

(output from function best.lr())

Best 10 models

Number of observations = 20

F = 10314.54378, R^2 = 0.9982579314, Model is 1/y~I(log(p)), Intercept =

0.423373524, and Slope1 = -3.378677125

F = 9989.276755, R^2 = 0.9982013089, Model is 1/y~I(sqrt(p)), Intercept =

7.571500237, and Slope1 = -7.155908388

F = 8637.8479, R^2 = 0.997920481, Model is 1/y~I(1/sqrt(p)), Intercept = -

5.943308725, and Slope1 = 6.37442545

F = 7988.721481, R^2 = 0.9977518888, Model is 1/y~p, Intercept = 4.192868613,

and Slope1 = -3.785088904

F = 7948.597025, R^2 = 0.997740566, Model is 1/y^2~I(1/p^3), Intercept = -

1.140407526, and Slope1 = 1.284048809

F = 6548.893259, R^2 = 0.9972589778, Model is 1/sqrt(y)~I(p^3), Intercept =

1.533961682, and Slope1 = -0.8889127028

F = 6385.626878, R^2 = 0.997189093, Model is 1/y~I(1/p), Intercept = -

2.564686528, and Slope1 = 3.00350002

F = 5902.203954, R^2 = 0.9969595642, Model is 1/sqrt(y)~I(p^2), Intercept =

1.852050529, and Slope1 = -1.197615078

Page 54 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

F = 4155.148934, R^2 = 0.9956867104, Model is 1/y~I(p^2), Intercept =

2.503611584, and Slope1 = -2.11151556

F = 3673.553842, R^2 = 0.9951240045, Model is 1/sqrt(y)~p, Intercept =

2.80641054, and Slope1 = -2.14263877

(output from function best.mlr1b())

Best 10 models

Number of observations = 20

F = 12651.48548, R^2 = 0.9993285932, Model is 1/y^2~I(1/p^3)+I(1/p^2),

Intercept = 0.1393372974, Slope1 = 3.069456956, and Slope2 = -3.032364921

F = 11976.44002, R^2 = 0.9992907766, Model is 1/y^2~I(1/p^3)+I(1/p),

Intercept = 1.388431219, Slope1 = 2.163838563, and Slope2 = -3.375396666

F = 11659.94897, R^2 = 0.9992715399, Model is 1/y^2~I(1/sqrt(p))+I(1/p^3),

Intercept = 3.886505106, Slope1 = -5.692130262, and Slope2 = 1.982714881

F = 11356.74326, R^2 = 0.9992521058, Model is 1/y^2~I(1/p^3)+I(log(p)),

Intercept = -1.684664896, Slope1 = 1.861967469, and Slope2 = 2.498040813

F = 11066.28667, R^2 = 0.9992324909, Model is 1/y^2~I(1/p^3)+I(sqrt(p)),

Intercept = -6.105599489, Slope1 = 1.775721878, and Slope2 = 4.507389099

F = 10788.05700, R^2 = 0.999212712, Model is 1/y^2~I(1/p^3)+p, Intercept = -

3.607533132, Slope1 = 1.711040880, and Slope2 = 2.074208556

F = 10543.56227, R^2 = 0.9991944703, Model is 1/y^2~I(1/p^2)+I(1/p),

Intercept = 4.431463649, Slope1 = 7.29130827, and Slope2 = -11.54429577

F = 10266.26461, R^2 = 0.9991727304, Model is 1/y^2~I(1/p^3)+I(p^2),

Intercept = -2.358469297, Slope1 = 1.620498177, and Slope2 = 0.9160841338

F = 10098.17828, R^2 = 0.999158972, Model is 1/y^2~I(1/sqrt(p))+I(1/p^2),

Intercept = 10.86944406, Slope1 = -16.26115167, and Slope2 = 5.570690454

F = 9787.496437, R^2 = 0.9991322986, Model is 1/y^2~I(1/p^3)+I(p^3),

Intercept = -1.942096031, Slope1 = 1.560152400, and Slope2 = 0.5604351551

(output from function best.mlr2b())

Best 10 models

Number of observations =

F = 847199.089, R^2 = 0.9999937048, Model is 1/y^3~I(1/p^3)+I(1/p^2)+I(1/p),

Intercept = -63.8411425, Slope1 = 58.53066569, Slope2 = -177.5904702, and

Slope3 = 182.9468583

F = 751832.5366, R^2 = 0.9999929063, Model is

1/y^3~I(1/sqrt(p))+I(1/p^3)+I(1/p^2), Intercept = -132.3309625, Slope1 =

206.8528267, Slope2 = 48.91298144, and Slope3 = -123.3893471

F = 668769.4216, R^2 = 0.9999920252, Model is

1/y^3~I(1/p^3)+I(1/p^2)+I(log(p)), Intercept = 53.83315534, Slope1 =

42.50151169, Slope2 = -96.28958316, and Slope3 = -68.49046874

F = 596702.0452, R^2 = 0.999991062, Model is

1/y^3~I(1/p^3)+I(1/p^2)+I(sqrt(p)), Intercept = 141.6322162, Slope1 =

37.92216972, Slope2 = -80.03037219, and Slope3 = -99.47934654

F = 576493.0223, R^2 = 0.9999907487, Model is

1/y^3~I(1/sqrt(p))+I(1/p^3)+I(1/p), Intercept = -288.1929139, Slope1 =

677.6287815, Slope2 = 27.01431287, and Slope3 = -416.4056129

F = 534253.7517, R^2 = 0.9999900173, Model is 1/y^3~I(1/p^3)+I(1/p^2)+p,

Intercept = 73.14240232, Slope1 = 34.48791207, Slope2 = -69.19144521, and

Slope3 = -38.39462045

F = 511082.2623, R^2 = 0.9999895647, Model is

1/y^3~I(1/p^3)+I(1/p)+I(log(p)), Intercept = 193.1564557, Slope1 =

23.51283238, Slope2 = -216.6251728, and Slope3 = -149.5705827

Page 55 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

F = 455146.3132, R^2 = 0.9999882823, Model is

1/y^3~I(1/p^3)+I(1/p)+I(sqrt(p)), Intercept = 310.0921794, Slope1 =

21.01192408, Slope2 = -150.0329548, and Slope3 = -181.0274877

F = 455108.9046, R^2 = 0.9999882813, Model is 1/y^2~p+I(p^2)+I(p^3),

Intercept = 92.4303304, Slope1 = -280.4860626, Slope2 = 289.1706894, and

Slope3 = -100.9769778

F = 450365.0935, R^2 = 0.9999881579, Model is

1/y^3~I(1/sqrt(p))+I(1/p^3)+I(log(p)), Intercept = 715.0530223, Slope1 = -

734.7247027, Slope2 = 19.71530782, and Slope3 = -311.735117

The function best.lr() returns the following best model 1 (with F = 10314.54378 and R
2
 =

0.9982579314):

Qinv = 1/[0.423373524 – 3.378677125 ln(p)]

The function best.mlr1b() returns the following best model 2 (with F = 12651.48548 and R
2
 =

0.9993285932):

Qinv = 1/√[0.1393372974 + 3.069456956 / p
3
 – 3.032364921 / p

2
]

The function best.mlr2b() returns the following best model 3 (with F = 847199.089 and R
2
 =

0.9999937048):

Qinv = 1/[–63.8411425 + 58.53066569 / p
3
 – 177.5904702 / p

2
 + 182.9468583 / p]^(1/3)

I expect that the above models, and especially the last one, to give a good overall approximation

for the inverse Normal distribution.

The Best Model to Approximate the Inverse Student-t Distribution

Tested Models

The second test handles the inverse Student-t distribution. The test covers the confidence levels

of 0.85, 0.90, 0.95, and 0.99, as well as the degrees of freedom in the range of 5 to 50, in

increments of 1. The categories of models tested are:

 f0(Tinv) = A + B f1(p) + C f2(df) (4)

 f0(Tinv) = A + B f1(p) + C f2(df) + D f3(p / df) (5)

 f0(Tinv) = A + B f1(p) + C f2(df) + D f3(df / p) (6)

Where p is the confidence level.

Test Code

Execute the following commands to initialize the data and perform the best-model selection. I

suggest that you type in the commands in a script window, select these commands, and then

execute them by pressing the CTRL+R keys:

Page 56 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

options(digits=10)

p = c(0.85, 0.90, 0.95, 0.99)

num.p = length(p)

df1 = 5

df2 = 50

num.df = df2 - df1 + 1

p.vect = c()

df.vect = c()

for (i in 1:num.p) {

 p.vect = c(p.vect, rep(p[i], num.df))

 df.vect = c(df.vect, df1:df2)

}

y = abs(qt(p.vect, df.vect))

x = p.vect / df.vect

z = p.vect * df.vect

dummy = best.mlr1(p.vect, df.vect, y, name.x1="p.vect", name.x2="df.vect",

name.y="y", show.best=10)

dummy = best.mlr2(p.vect, df.vect, x, y, name.x1="p.vect", name.x2="df.vect",

name.x3="x", name.y="y", show.best=10)

dummy = best.mlr2(p.vect, df.vect, z, y, name.x1="p.vect", name.x2="df.vect",

name.x3="z", name.y="y", show.best=10)

The Results

Here is the output generated by the above commands:

(output from function best.mlr1())

Best 10 models

Number of observations = 184

F = 85332.72615, R^2 = 0.9989405692, Model is

1/y^2~I(1/p.vect^3)+I(1/df.vect), Intercept = -1.041795169, Slope1 =

1.203351118, and Slope2 = -0.696798663

F = 72884.06763, R^2 = 0.998759842, Model is

1/y^2~I(1/p.vect^3)+I(1/sqrt(df.vect)), Intercept = -0.9975400673, Slope1 =

1.203351118, and Slope2 = -0.3731081525

F = 72444.75289, R^2 = 0.9987523308, Model is

1/y^2~I(1/p.vect^2)+I(1/df.vect), Intercept = -1.827769738, Slope1 =

1.979730501, and Slope2 = -0.696798663

F = 64215.57831, R^2 = 0.998592668, Model is 1/y~I(p.vect^3)+I(1/df.vect),

Intercept = 1.892130896, Slope1 = -1.509551568, and Slope2 = -0.5601569163

F = 63267.26108, R^2 = 0.9985716036, Model is

1/y^2~I(1/p.vect^2)+I(1/sqrt(df.vect)), Intercept = -1.783514636, Slope1 =

1.979730501, and Slope2 = -0.3731081525

F = 53129.97481, R^2 = 0.9982995266, Model is

1/y~I(p.vect^3)+I(1/sqrt(df.vect)), Intercept = 1.927484175, Slope1 = -

1.509551568, and Slope2 = -0.2989108208

F = 47451.77014, R^2 = 0.9980964308, Model is 1/y~I(p.vect^2)+I(1/df.vect),

Intercept = 2.477253543, Slope1 = -2.086900878, and Slope2 = -0.5601569163

F = 46539.07778, R^2 = 0.9980591718, Model is

1/y^2~I(1/p.vect^3)+I(log(df.vect)), Intercept = -1.217668567, Slope1 =

1.203351118, and Slope2 = 0.04409368605

F = 44915.3537, R^2 = 0.9979891505, Model is

1/y^2~I(1/p.vect^3)+I(1/df.vect^2), Intercept = -1.063038754, Slope1 =

1.203351118, and Slope2 = -3.504196932

Page 57 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

F = 42416.3909, R^2 = 0.9978709334, Model is

1/y^2~I(1/p.vect^2)+I(log(df.vect)), Intercept = -2.003643136, Slope1 =

1.979730501, and Slope2 = 0.04409368605

(output from function best.mlr2(p.vect, df.vect, x, y, …))

Best 10 models

Number of observations = 184

F = 105928.1895, R^2 = 0.9994338992, Model is

1/y^2~I(1/p.vect^3)+I(1/df.vect)+x, Intercept = -1.086868115, Slope1 =

1.238042388, Slope2 = -3.318147302, and Slope3 = 2.84157034

F = 91277.1574, R^2 = 0.9993430932, Model is

1/y^2~I(1/p.vect^2)+I(1/df.vect)+x, Intercept = -1.902228151, Slope1 =

2.042472105, Slope2 = -3.573390316, and Slope3 = 3.118256535

F = 79336.58196, R^2 = 0.9992443, Model is

1/y^2~I(1/p.vect^3)+I(1/df.vect^2)+I(x^3), Intercept = -1.069613422, Slope1 =

1.213593431, Slope2 = -8.190212887, and Slope3 = 33.08381466

F = 73792.4377, R^2 = 0.9991875691, Model is

1/y^2~I(1/p.vect^3)+I(1/sqrt(df.vect))+I(sqrt(x)), Intercept = -1.089508881,

Slope1 = 1.274136706, Slope2 = -2.956464195, and Slope3 = 2.690782426

F = 73400.62317, R^2 = 0.9991832359, Model is

1/y^2~I(1/p.vect^2)+I(1/sqrt(df.vect))+I(sqrt(x)), Intercept = -1.95096451,

Slope1 = 2.120830386, Slope2 = -3.498385178, and Slope3 = 3.255238674

F = 66577.62819, R^2 = 0.9990996078, Model is

1/y^2~I(1/p.vect^2)+I(1/df.vect^2)+I(x^3), Intercept = -1.862563604, Slope1 =

1.996920230, Slope2 = -8.271526835, and Slope3 = 33.65790053

F = 63940.96147, R^2 = 0.999062514, Model is

1/y^2~I(1/p.vect^3)+I(1/df.vect)+I(x^2), Intercept = -1.038669979, Slope1 =

1.206258031, Slope2 = -0.9389629962, and Slope3 = 1.555004637

F = 63630.72568, R^2 = 0.9990579476, Model is

1/y^2~I(1/p.vect^3)+df.vect+I(1/sqrt(x)), Intercept = -1.244541389, Slope1 =

1.150244234, Slope2 = -0.00662909918, and Slope3 = 0.07909737872

F = 62181.29152, R^2 = 0.9990360097, Model is

1/y^2~I(1/p.vect^3)+I(1/df.vect)+I(x^3), Intercept = -1.039507944, Slope1 =

1.204882586, Slope2 = -0.817514405, and Slope3 = 4.946814764

F = 57899.93964, R^2 = 0.9989648022, Model is

1/y^2~I(1/p.vect^3)+I(1/df.vect)+I(1/x^3), Intercept = -1.043159707, Slope1 =

1.202109312, Slope2 = -0.6708168474, and Slope3 = 3.514130185e-08

(output from function best.mlr2(p.vect, df.vect, z, y, …))

Best 10 models

Number of observations = 184

F = 110630.7760, R^2 = 0.9994579494, Model is

1/y^2~I(1/p.vect^3)+I(1/df.vect)+I(1/z), Intercept = -1.088313020, Slope1 =

1.239154488, Slope2 = 1.976017956, and Slope3 = -2.457584847

F = 87048.14812, R^2 = 0.999311201, Model is

1/y^2~I(1/p.vect^3)+I(1/df.vect^3)+I(1/z^2), Intercept = -1.080102503, Slope1

= 1.221541185, Slope2 = 25.86184805, and Slope3 = -6.833267405

F = 86656.15267, R^2 = 0.9993080874, Model is

1/y^2~I(1/p.vect^2)+I(1/df.vect)+I(1/z), Intercept = -1.900365256, Slope1 =

2.040902356, Slope2 = 2.076724655, and Slope3 = -2.550182018

F = 76673.8505, R^2 = 0.9992180765, Model is

1/y^2~I(1/p.vect^3)+I(1/sqrt(df.vect))+I(1/sqrt(z)), Intercept = -

1.093994835, Slope1 = 1.277589408, Slope2 = 2.319889493, and Slope3 = -

2.583359227

Page 58 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

F = 76228.98167, R^2 = 0.9992135168, Model is

1/y^2~I(1/p.vect^3)+I(1/df.vect^2)+I(1/z), Intercept = -1.052129740, Slope1 =

1.214672583, Slope2 = 0.7801479834, and Slope3 = -0.7771185233

F = 74748.73533, R^2 = 0.9991979546, Model is

1/y^2~I(1/p.vect^3)+I(1/df.vect^3)+I(1/z), Intercept = -1.052596293, Slope1 =

1.213589772, Slope2 = 1.987987787, and Slope3 = -0.7027931

F = 73603.08311, R^2 = 0.9991854807, Model is

1/y^2~I(1/p.vect^3)+I(1/sqrt(df.vect))+I(1/z), Intercept = -1.063795812,

Slope1 = 1.214387088, Slope2 = 0.06615519616, and Slope3 = -0.7575218136

F = 72883.4298, R^2 = 0.9991774448, Model is

1/y^2~I(1/p.vect^3)+I(df.vect^2)+I(1/z), Intercept = -1.054534031, Slope1 =

1.212666156, Slope2 = 6.030627484e-07, and Slope3 = -0.6393950267

F = 72883.0648, R^2 = 0.9991774406, Model is

1/y^2~I(1/p.vect^3)+I(df.vect^3)+I(1/z), Intercept = -1.054298753, Slope1 =

1.212689327, Slope2 = 1.097472589e-08, and Slope3 = -0.6409855167

F = 72843.99299, R^2 = 0.9991769998, Model is

1/y^2~I(1/p.vect^3)+df.vect+I(1/z), Intercept = -1.054984221, Slope1 =

1.212645362, Slope2 = 3.483767528e-05, and Slope3 = -0.6379677173

The function best.mlr1() yields the following best model 4 (with F = 85332.72615 and R
2
 =

0.9989405692):

Tinv = 1/√ [–1.041795169 + 1.203351118 / p
3
 – 0.696798663 / df]

The first call to function best.mlr2() yields the following best model 5 (with F = 105928.1895

and R
2
 = 0.9994338992):

Tinv = 1/√[–1.086868115 + 1.238042388 / p
3
 – 3.318147302 / df

 + 2.84157034 (p / df)]

The second call to function best.mlr2() yields the following best model 6 (with F = 110630.7760

and R
2
 = 0.9994579494):

Tinv = 1/√ [–1.088313020 + 1.239154488 / p
3
 + 1.976017956 / df

 – 2.457584847 / (p * df)]

The last model is more promising than the other two models.

The Best Model to Approximate the Inverse Chi-square Distribution

Tested Models

The third test deals with the inverse Chi-square distribution. The test covers the confidence

levels of 0.85, 0.90, 0.95, and 0.99, as well as the degrees of freedom in the range of 5 to 50, in

increments of 1. The categories of models tested are:

 f0(ChiSqrInv) = A + B f1(p) + C f2(df) (7)

Page 59 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 f0(ChiSqrInv) = A + B f1(p) + C f2(df) + D f3(p / df) (8)

 f0(ChiSqrInv) = A + B f1(p) + C f2(df) + D f3(df / p) (9)

Where p is the confidence level.

Test Code

Execute the following commands to initialize the data and perform the best-model selection. I

suggest that you type in the commands in a script window, select these commands, and then

execute them by pressing the CTRL+R keys:

options(digits=10)

p = c(0.85, 0.90, 0.95, 0.99)

num.p = length(p)

df1 = 5

df2 = 50

num.df = df2 - df1 + 1

p.vect = c()

df.vect = c()

for (i in 1:num.p) {

 p.vect = c(p.vect, rep(p[i], num.df))

 df.vect = c(df.vect, df1:df2)

}

y = qchisq(p.vect, df.vect)

x = p.vect / df.vect

z = p.vect * df.vect

dummy = best.mlr1(p.vect, df.vect, y, name.x1="p.vect", name.x2="df.vect",

name.y="y", show.best=10)

dummy = best.mlr2(p.vect, df.vect, x, y, name.x1="p.vect", name.x2="df.vect",

name.x3="x", name.y="y", show.best=10)

dummy = best.mlr2(p.vect, df.vect, z, y, name.x1="p.vect", name.x2="df.vect",

name.x3="z", name.y="y", show.best=10)

The Results

Here is the output generated by the above commands:

(output from function best.mlr1())

Best 10 models

Number of observations = 184

F = 22278.00566, R^2 = 0.995954133, Model is

sqrt(y)~I(p.vect^3)+I(sqrt(df.vect)), Intercept = -1.084352387, Slope1 =

2.675016518, and Slope2 = 1.008922006

F = 19044.87883, R^2 = 0.9952705405, Model is

sqrt(y)~I(p.vect^2)+I(sqrt(df.vect)), Intercept = -2.104816121, Slope1 =

3.678895095, and Slope2 = 1.008922006

F = 16468.07489, R^2 = 0.9945345538, Model is

sqrt(y)~p.vect+I(sqrt(df.vect)), Intercept = -5.170229354, Slope1 =

6.727763569, and Slope2 = 1.008922006

F = 15373.95526, R^2 = 0.9941478702, Model is

sqrt(y)~I(sqrt(p.vect))+I(sqrt(df.vect)), Intercept = -11.30419306, Slope1 =

12.85348621, and Slope2 = 1.008922006

Page 60 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

F = 14387.91256, R^2 = 0.9937493147, Model is

sqrt(y)~I(log(p.vect))+I(sqrt(df.vect)), Intercept = 1.541081676, Slope1 =

6.135039429, and Slope2 = 1.008922006

F = 13496.81216, R^2 = 0.9933393743, Model is

sqrt(y)~I(1/sqrt(p.vect))+I(sqrt(df.vect)), Intercept = 13.23815799, Slope1 =

-11.70525162, and Slope2 = 1.008922006

F = 12689.40385, R^2 = 0.9929185696, Model is

sqrt(y)~I(1/p.vect)+I(sqrt(df.vect)), Intercept = 7.104234865, Slope1 = -

5.579461091, and Slope2 = 1.008922006

F = 11288.28598, R^2 = 0.9920466032, Model is

sqrt(y)~I(1/p.vect^2)+I(sqrt(df.vect)), Intercept = 4.038983577, Slope1 = -

2.530321027, and Slope2 = 1.008922006

F = 10375.14810, R^2 = 0.9913526617, Model is

log(y)~I(p.vect^3)+I(log(df.vect)), Intercept = 0.2849832164, Slope1 =

0.9201003463, and Slope2 = 0.8091213202

F = 10149.01418, R^2 = 0.99116169, Model is y~I(p.vect^3)+df.vect, Intercept

= -20.26493449, Slope1 = 33.10174898, and Slope2 = 1.229571544

(output from function best.mlr2(p.vect, df.vect, x, y, …))

Best 10 models

Number of observations = 184

F = 20332.45745, R^2 = 0.9970577357, Model is

log(y)~I(p.vect^3)+df.vect+I(1/sqrt(x)), Intercept = -0.334941322, Slope1 =

1.680748411, Slope2 = -0.03570613198, and Slope3 = 0.6735229184

F = 16496.46882, R^2 = 0.9963760388, Model is

sqrt(y)~I(p.vect^3)+I(sqrt(df.vect))+I(1/sqrt(x)), Intercept = -1.701128048,

Slope1 = 3.453086224, Slope2 = 0.2907337611, and Slope3 = 0.6889490728

F = 16352.73329, R^2 = 0.9963443018, Model is

sqrt(y)~I(p.vect^3)+I(1/sqrt(df.vect))+I(log(x)), Intercept = -14.89368444,

Slope1 = 4.49896018, Slope2 = 16.79714232, and Slope3 = -4.267714299

F = 16284.89907, R^2 = 0.99632913, Model is

sqrt(y)~I(p.vect^3)+I(log(df.vect))+I(1/sqrt(x)), Intercept = -1.988981590,

Slope1 = 3.73333816, Slope2 = 0.0721702623, and Slope3 = 0.9371007617

F = 16255.71438, R^2 = 0.9963225637, Model is

sqrt(y)~I(p.vect^3)+I(1/sqrt(df.vect))+I(1/sqrt(x)), Intercept = -

1.819849140, Slope1 = 3.753890008, Slope2 = -0.2469050707, and Slope3 =

0.9552985871

F = 16246.39939, R^2 = 0.996320463, Model is

sqrt(y)~I(p.vect^3)+I(1/df.vect)+I(1/sqrt(x)), Intercept = -1.888917115,

Slope1 = 3.75952112, Slope2 = -0.2896816843, and Slope3 = 0.9602847077

F = 16236.79507, R^2 = 0.9963182945, Model is

sqrt(y)~I(p.vect^3)+I(1/df.vect^2)+I(1/sqrt(x)), Intercept = -1.921527929,

Slope1 = 3.763465756, Slope2 = -0.9504536465, and Slope3 = 0.9637775223

F = 16229.78538, R^2 = 0.9963167102, Model is

sqrt(y)~I(p.vect^3)+I(1/df.vect^3)+I(1/sqrt(x)), Intercept = -1.931543885,

Slope1 = 3.764931655, Slope2 = -4.106569837, and Slope3 = 0.965075516

F = 16206.82735, R^2 = 0.9963115118, Model is

sqrt(y)~I(p.vect^3)+I(df.vect^3)+I(1/sqrt(x)), Intercept = -1.967713520,

Slope1 = 3.772289196, Slope2 = -1.756225674e-07, and Slope3 = 0.9715903194

F = 16206.33779, R^2 = 0.9963114008, Model is

sqrt(y)~I(p.vect^3)+I(df.vect^2)+I(1/sqrt(x)), Intercept = -1.974489229,

Slope1 = 3.774429544, Slope2 = -1.193482499e-05, and Slope3 = 0.9734855104

Best 10 models

(output from function best.mlr2(p.vect, df.vect, z, y, …))

Page 61 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

Number of observations = 184

F = 15816.86647, R^2 = 0.9962209168, Model is

sqrt(y)~I(p.vect^3)+I(sqrt(df.vect))+I(sqrt(z)), Intercept = -1.584809496,

Slope1 = 3.306349012, Slope2 = 1.593508245, and Slope3 = -0.6088956962

F = 14933.64285, R^2 = 0.995998304, Model is

sqrt(y)~I(p.vect^3)+I(sqrt(df.vect))+z, Intercept = -1.234914745, Slope1 =

2.732766426, Slope2 = 1.056413284, and Slope3 = -0.005347349765

F = 14843.54254, R^2 = 0.9959741115, Model is

sqrt(y)~I(p.vect^3)+I(sqrt(df.vect))+I(z^2), Intercept = -1.139702411, Slope1

= 2.69402451, Slope2 = 1.021312115, and Slope3 = -2.819390712e-05

F = 14819.77767, R^2 = 0.9959676817, Model is

sqrt(y)~I(p.vect^3)+I(sqrt(df.vect))+I(z^3), Intercept = -1.118660273, Slope1

= 2.68775192, Slope2 = 1.01569845, and Slope3 = -3.603933998e-07

F = 14805.92074, R^2 = 0.995963923, Model is

sqrt(y)~I(p.vect^3)+I(sqrt(df.vect))+I(1/z^2), Intercept = -1.059460735,

Slope1 = 2.671745831, Slope2 = 1.005270908, and Slope3 = -0.7336253668

F = 14803.59042, R^2 = 0.9959632903, Model is

sqrt(y)~I(p.vect^3)+I(sqrt(df.vect))+I(1/z^3), Intercept = -1.067620686,

Slope1 = 2.672389416, Slope2 = 1.006432228, and Slope3 = -2.99039817

F = 14800.77773, R^2 = 0.9959625262, Model is

sqrt(y)~I(p.vect^3)+I(sqrt(df.vect))+I(1/z), Intercept = -1.038128998, Slope1

= 2.669911204, Slope2 = 1.002945232, and Slope3 = -0.2086381287

F = 14790.93968, R^2 = 0.9959598516, Model is

sqrt(y)~I(p.vect^3)+I(sqrt(df.vect))+I(1/sqrt(z)), Intercept = -1.007159865,

Slope1 = 2.668087539, Slope2 = 1.001155657, and Slope3 = -0.1433452943

F = 14771.86154, R^2 = 0.9959546548, Model is

sqrt(y)~I(p.vect^3)+I(sqrt(df.vect))+I(log(z)), Intercept = -1.090051273,

Slope1 = 2.670197565, Slope2 = 1.003950670, and Slope3 = 0.0112755217

F = 14674.40355, R^2 = 0.9959278976, Model is

log(y)~I(p.vect^3)+I(sqrt(df.vect))+z, Intercept = -0.07455766806, Slope1 =

1.342879144, Slope2 = 0.705789474, and Slope3 = -0.03914718139

The function best.mlr1() yields the following best model 7 (with F = 22278.00566 and R
2
 =

0.995954133):

ChiSqrInv = [–1.084352387+ 2.675016518 p
3
 + 1.008922006 √df]

2

The first call to function best.mlr2() yields the following best model 8 (with F = 20332.45745

and R
2
 = 0.9970577357):

ChiSqrInv = exp[–0.334941322 + 1.680748411 p
3
 – 0.03570613198 df

 + 0.6735229184 / √(p / df)]

The second call to function best.mlr2() yields the following best model 9 (with F = 15816.86647

and R
2
 = 0.9962209168):

ChiSqrInv = [–1.584809496 + 3.306349012 p
3
 + 1.593508245 √df

 – 0.6088956962 √ (p * df)]
 2

Page 62 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

The first model is more promising than the other two models.

The Best Model to Approximate the Inverse F Distribution

Tested Models

The last test tackles the inverse F distribution. The test covers the confidence levels of 0.85, 0.90,

0.95, and 0.99, as well as the two degrees of freedom in the range of 5 to 50, in increments of 1.

The category of models tested is:

 f0(Finv) = A + B f1(p) + C f2(df1) + D f3(df2) (10)

Where α is the confidence level.

Test Code

Execute the following commands to initialize the data and perform the best-model selection. I

suggest that you type in the commands in a script window, select these commands, and then

execute them by pressing the CTRL+R keys:

options(digits=10)

p = c(0.85, 0.90, 0.95, 0.99)

num.p = length(p)

df11 = 5

df21 = 50

df12 = 5

df22 = 50

num.df1 = df21 - df11 + 1

num.df2 = df22 - df12 + 1

p.vect = c()

df1.vect = c()

df2.vect = c()

for (i in 1:num.p) {

 p.vect = c(p.vect, rep(p[i], num.df2 * num.df1))

 for (j in df11:df21) {

 df1.vect = c(df1.vect, rep(j, num.df2))

 df2.vect = c(df2.vect, df12:df22)

 }

}

y = qf(p.vect, df1.vect, df2.vect)

dummy = best.mlr2(p.vect, df1.vect, df2.vect, y, name.x1="p.vect",

name.x2="df1.vect", name.x3="df2.vect", name.y="y", show.best=10)

The Results

Here is the output generated by the above commands:

Best 10 models

Number of observations = 8464

F = 109495.8443, R^2 = 0.9748922334, Model is

1/y~I(p.vect^3)+I(1/sqrt(df1.vect))+I(1/sqrt(df2.vect)), Intercept =

Page 63 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

1.452746260, Slope1 = -0.7549204893, Slope2 = -0.4726944735, and Slope3 = -

1.124248917

F = 104935.9859, R^2 = 0.9738297601, Model is

1/y~I(p.vect^3)+I(log(df1.vect))+I(1/sqrt(df2.vect)), Intercept =

1.169084883, Slope1 = -0.7549204893, Slope2 = 0.05737550302, and Slope3 = -

1.124248917

F = 99877.83648, R^2 = 0.9725408042, Model is

1/y~I(p.vect^3)+I(1/df1.vect)+I(1/sqrt(df2.vect)), Intercept = 1.395449242,

Slope1 = -0.7549204893, Slope2 = -0.8593652257, and Slope3 = -1.124248917

F = 94697.83516, R^2 = 0.9710822129, Model is

1/y~I(p.vect^2)+I(1/sqrt(df1.vect))+I(1/sqrt(df2.vect)), Intercept =

1.742429573, Slope1 = -1.040213869, Slope2 = -0.4726944735, and Slope3 = -

1.124248917

F = 91733.97327, R^2 = 0.9701757641, Model is

1/y^2~I(p.vect^3)+I(1/sqrt(df1.vect))+I(log(df2.vect)), Intercept =

0.5743216997, Slope1 = -0.7403353229, Slope2 = -0.4758895650, and Slope3 =

0.1244083215

F = 91241.89124, R^2 = 0.9700197395, Model is

1/y~I(p.vect^2)+I(log(df1.vect))+I(1/sqrt(df2.vect)), Intercept =

1.458768196, Slope1 = -1.040213869, Slope2 = 0.05737550302, and Slope3 = -

1.124248917

F = 91221.61667, R^2 = 0.970013276, Model is

1/y^2~I(p.vect^3)+I(log(df1.vect))+I(log(df2.vect)), Intercept =

0.2874519906, Slope1 = -0.7403353229, Slope2 = 0.05817202802, and Slope3 =

0.1244083215

F = 90749.55379, R^2 = 0.9698619916, Model is

1/y~I(p.vect^3)+I(sqrt(df1.vect))+I(1/sqrt(df2.vect)), Intercept =

1.224827980, Slope1 = -0.7549204893, Slope2 = 0.02478626458, and Slope3 = -

1.124248917

F = 87364.54333, R^2 = 0.9687307836, Model is

1/y~I(p.vect^2)+I(1/df1.vect)+I(1/sqrt(df2.vect)), Intercept = 1.685132555,

Slope1 = -1.040213869, Slope2 = -0.8593652257, and Slope3 = -1.124248917

F = 85559.94591, R^2 = 0.968092309, Model is

1/y^2~I(p.vect^2)+I(1/sqrt(df1.vect))+I(log(df2.vect)), Intercept =

0.8598958186, Slope1 = -1.021859090, Slope2 = -0.4758895650, and Slope3 =

0.1244083215

The best model 10 generated by function best.mlr2() is (with F = 109495.8443 and R
2
 =

0.9748922334):

Finv = 1/[1.452746260 – 0.7549204893 p
3
 – 0.4726944735 / √df1 – 1.124248917/ √df2]

The above model is not very reliable since the value if R
2
 is below 0.99000. In the world of high

expectations from this kind of approximations, the above model would yield disappointing

results! A good empirical approximation that I was able to build has more terms and more

elaborate transformations.

Using the F statistics to asses various models is better than the coefficient of determination, as

the F statistic does not bow to the constraining value of 1, as does R
2
.

Page 64 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

Using the Significance Levels
It may come as a surprise for some readers that replacing the confidence level p with the

significance level α (equals (1-p)/2) in the tested models gives generally better results. Here is

the test code for the four common distributions:

options(digits=10)

p = seq(0.8, 0.99, 0.01)

a = (1-p)/2

y = qnorm(a)

dummy = best.lr(a, y, name.x="a", name.y="y", show.best=10)

dummy = best.mlr1b(a, y, name.x="a", name.y="y", show.best=10)

dummy = best.mlr2b(a, y, name.x="a", name.y="y", show.best=10)

inverse Student-t

options(digits=10)

p = c(0.85, 0.90, 0.95, 0.99)

a = (1-p)/2

num.a = length(a)

df1 = 5

df2 = 50

num.df = df2 - df1 + 1

a.vect = c()

df.vect = c()

for (i in 1:num.a) {

 a.vect = c(a.vect, rep(a[i], num.df))

 df.vect = c(df.vect, df1:df2)

}

y = qt(a.vect, df.vect)

x = a.vect / df.vect

z = a.vect * df.vect

dummy = best.mlr1(a.vect, df.vect, y, name.x1="a.vect", name.x2="df.vect",

name.y="y", show.best=10)

dummy = best.mlr2(a.vect, df.vect, x, y, name.x1="a.vect", name.x2="df.vect",

name.x3="x", name.y="y", show.best=10)

dummy = best.mlr2(a.vect, df.vect, z, y, name.x1="a.vect", name.x2="df.vect",

name.x3="z", name.y="y", show.best=10)

inverse Chi-square

options(digits=10)

p = c(0.85, 0.90, 0.95, 0.99)

a = (1-p)/2

num.a = length(a)

df1 = 5

df2 = 50

num.df = df2 - df1 + 1

a.vect = c()

df.vect = c()

for (i in 1:num.a) {

 a.vect = c(a.vect, rep(a[i], num.df))

 df.vect = c(df.vect, df1:df2)

}

y = qchisq(a.vect, df.vect)

x = a.vect / df.vect

Page 65 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

z = a.vect * df.vect

dummy = best.mlr1(a.vect, df.vect, y, name.x1="a.vect", name.x2="df.vect",

name.y="y", show.best=10)

dummy = best.mlr2(a.vect, df.vect, x, y, name.x1="a.vect", name.x2="df.vect",

name.x3="x", name.y="y", show.best=10)

dummy = best.mlr2(a.vect, df.vect, z, y, name.x1="a.vect", name.x2="df.vect",

name.x3="z", name.y="y", show.best=10)

inverse F

p = c(0.85, 0.90, 0.95, 0.99)

a = (1-p)/2

num.a = length(a)

df11 = 5

df21 = 50

df12 = 5

df22 = 50

num.df1 = df21 - df11 + 1

num.df2 = df22 - df12 + 1

a.vect = c()

df1.vect = c()

df2.vect = c()

for (i in 1:num.a) {

 a.vect = c(a.vect, rep(a[i], num.df2 * num.df1))

 for (j in df11:df21) {

 df1.vect = c(df1.vect, rep(j, num.df2))

 df2.vect = c(df2.vect, df12:df22)

 }

}

y = qf(a.vect, df1.vect, df2.vect)

dummy = best.mlr2(a.vect, df1.vect, df2.vect, y, name.x1="a.vect",

name.x2="df1.vect", name.x3="df2.vect", name.y="y", show.best=10)

The above code is very similar to the one I presented in the previous sections. Without listing the

output, which looks very similar, I will simply list the best models that use the significance

levels:

The Inverse Normal Distribution

The function best.lr() returns the following best model 1 (with F = 23275.46994 and R
2
 =

0.9992272512):

Qinv
2
 = –2.224502594 + 1.654856747 ln(α)

The function best.mlr1b() returns the following best model 2 (with F = 21576151.67 and R
2
 =

0.999999606):

Qinv = –1.186252673 + 0.2861352962 ln(α) + 1.781900821 √α

The function best.mlr2b() returns the following best model 3 (with F = 1824316363 and R
2
 =

0.999999997):

Qinv
2
 = –3.393022312 – 1.861790587 ln(α) + 1.763562059 α

2
 + 2.310890670 √α

Page 66 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

The Inverse Student-t Distribution

The function best.mlr1() yields the following best model 4 (with F = 47085.04163 and R
2
 =

0.998081633):

Tinv = 1/[0.2685566466 – 1.549320225 √α + 0.6019495052 / df]

The first call to function best.mlr2() yields the following best model 5 (with F = 112231.5646

and R
2
 = 0.9994656767):

Tinv
2
 = 1/[0.2230986339 + 4.169541863 α + 0.3786612402 / √df – 0.0005397186582 / √(α/df)]

The second call to function best.mlr2() yields the following best model 6 (with F = 64901.34386

and R
2
 = 0.9990763738):

Tinv = 1/[–0.2776183787 – 1.882129943 √α + 0.5222885533 / √df + 0.02491058733 ln(α * df)

The Inverse Chi-square Distribution

The function best.mlr1() yields the following best model 7 (with F = 240568.7114 and R
2
 =

0.9996239496):

ChiSqrInv = [–0.3666832465 + 0.2547098825 ln(α) + 0.992050952 √df]
2

The first call to function best.mlr2() yields the following best model 8 (with F = 887044.909 and

R
2
 = 0.9999323643):

ChiSqrInv = [–1.744640735 + 2.478192331 √α + 1.018618948 √df

 – 0.003717062919 / √(p / df)]
2

The second call to function best.mlr2() yields the following best model 9 (with F = 928697.7014

and R
2
 = 0.9999353976):

ChiSqrInv = [–0.3857586016 + 0.3103911880 ln(α) + 1.016090808 √df

 + 0.0647128734 / √ (p*df)]
 2

The Inverse F Distribution

The best model 10 generated by function best.mlr2() is (with F = 180844.1118 and R
2
 =

0.9846458844):

Finv = 0.6155558551 + 1.024845007 √α – 1.177836477 / √df1 – 0.5065293412 / √df2

The following table compares the two sets of best models for the various inverse distributions.

The table lists the F and R
2
 values. Granted that the best models we are comparing may or may

not be the same. What is important is how well the best model fit the data. The set of the

Page 67 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

significance level outperformed the one for confidence level in all cases, expect the one for the

result of best.mlr1() for the inverse Student-t. The reason might be that the variation in the

significance levels values represents a bigger spread than the variations in the confidence levels

values.

Inverse

Distribution

Model Number F

(confidence

level)

R
2
 (confidence

level)

F

(significance

level)

R
2
 (significance

level)

Normal 1 10314 0.9982579314 23275 0.9992272512

 2 12651 0.9993285932 21576151 0.9999996060

 3 847199 0.9999937048 1824316363 0.9999999970

Student-t 4 85332 0.9989405692 47085 0.9980816330

 5 105928 0.9994338992 112231 0.9994656767

 6 110630 0.9994579494 64901 0.9990763738

Chi-square 7 22278 0.9959541330 240568 0.9996239496

 8 20332 0.9970577357 887044 0.9999323643

 9 15816 0.9962209168 928697 0.9999353976

F 10 109495 0.9748922334 180844 0.9846458844

Massaging the Best-Model Search Output

The text output of the best-model search can be massaged to look more readable. This section

presents Excel VBA code which reads what the R functions generated, displays the result in

Excel, and also rewrites the information in a more readable form to a text file.

The VBA Code

The following VBA macro Parse and its helper functions can assist in reformatting the output

from the R functions:

Option Explicit

Const BAD_RESULT = 1E+100

Function GetValueIn(ByRef sStr As String) As Double

 Dim sVar As Variant

 Dim I As Integer

 ' split sStr at spaces

 sVar = Split(sStr, " ")

 GetValueIn = 1.1 * BAD_RESULT ' default function result

 ' Find a numerical value in array sVar

 For I = LBound(sVar) To UBound(sVar)

 ' found numeric value?

 If IsNumeric(sVar(I)) Then

 GetValueIn = CDbl(sVar(I)) ' assign value to function's return value

 Exit Function

 End If

 Next I

End Function

Page 68 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

Function GetValueAfter(ByRef sStr As String, ByVal sFind As String) As Double

 Dim I As Integer, J As Integer, K As Integer

 Dim sVal As String, sStr1 As String

 On Error GoTo HandleErr

 ' make a local copy

 sStr1 = sStr

 ' remove internal spaces

 Do While InStr(sStr1, " ") > 0

 sStr1 = Replace(sStr1, " ", "")

 Loop

 ' find the marker in variable sFind

 I = InStr(sStr1, sFind)

 If I > 0 Then

 ' find location of = sign

 J = InStr(I, sStr1, "=")

 ' find next comma or end of string

 K = InStr(J, sStr1, ",")

 If K = 0 Then K = Len(sStr1)

 sVal = Mid(sStr1, J + 1, K - J - 1)

 GetValueAfter = CDbl(sVal)

 Else

 GetValueAfter = 1.1 * BAD_RESULT

 End If

ExitProc:

 Exit Function

HandleErr:

 MsgBox "Error " & Err.Description & " String is " & sVal, _

 vbOKOnly + vbCritical, "Error"

 End ' Die!!!

''' GetValueAfter = 1.1E+100

''' Resume ExiProct

End Function

Function ExSplit(ByRef sStr As String, ByVal sSplitChar As String) As Variant

 Const DUMMY_PLUS = "?"

 Const PLUS = "+"

 Dim I As Integer, nNumOpenPar As Integer

 Dim C As String

 Dim vTerm As Variant

 nNumOpenPar = 0 ' initial state

 ' Scan string for open and close parentheses and plus characters

 For I = 1 To Len(sStr)

 C = Mid(sStr, I, 1) ' get the current character

 If C = "(" Then

 nNumOpenPar = nNumOpenPar + 1

 ElseIf C = ")" Then

 nNumOpenPar = nNumOpenPar - 1

 ElseIf C = PLUS Then

 ' plus sign inside parentheses?

 If nNumOpenPar > 0 Then

Page 69 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 Mid(sStr, I, 1) = DUMMY_PLUS ' temporarely change to dummy character

 Else

 ' do nothing

 End If

 Else

 ' do nothing

 End If

 Next I

 ' now split the string at the high-level plus characters

 vTerm = Split(sStr, PLUS)

 ' restore the lower-level plus characters

 For I = LBound(vTerm) To UBound(vTerm)

 vTerm(I) = Replace(vTerm(I), DUMMY_PLUS, PLUS)

 Next I

 ExSplit = vTerm

End Function

Function SaySignAndVal(ByVal X As Double) As String

 ' return sign and absolute value as a string

 SaySignAndVal = IIf(X < 0, " - " & CStr(Abs(X)), " + " & CStr(X))

End Function

Function PrintModel(ByRef sStr As String, ByVal Row As Integer, _

 ByVal Col As Integer) As String

 Dim N As Integer, I As Integer

 Dim sModel As String, sRes As String

 Dim sTerm As String

 Dim X As Double

 Dim vTerm As Variant

 ' extract the model

 sModel = GetModel(sStr)

 ' remove spces in the model

 Do While InStr(sModel, " ") > 0

 sModel = Replace(sModel, " ", "")

 Loop

 ' find the tilde character

 I = InStr(sModel, "~")

 ' get term for Y and append the intercept

 sRes = Left(sModel, I - 1) & " = " & Cells(Row, Col)

 N = 0 ' initialize number of terms

 ' remove Y term up to and including tilde character

 sModel = Mid(sModel, I + 1)

 ' split the rest of the the model into tokens

 vTerm = ExSplit(sModel, "+")

 ' iterate over each term

 For I = LBound(vTerm) To UBound(vTerm)

 N = N + 1 ' increment term counter

Page 70 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 sTerm = vTerm(I) ' get the next term

 ' Is the variable transformed using I()?

 If Left(sTerm, 2) = "I(" Then

 sTerm = Mid(sTerm, 3) ' chop leading 'I('

 sTerm = Left(sTerm, Len(sTerm) - 1) ' chop trailing ')'

 End If

 ' Check for shifting and scaling

 If (InStr(sTerm, "+") + InStr(sTerm, "-") + _

 InStr(sTerm, "*") + InStr(sTerm, "/")) > 0 Then

 sTerm = "(" & sTerm & ")" ' enclose in parentheses

 End If

 ' get the regression coefficient

 X = Cells(Row, Col + N)

 ' append regression coefficient AND term

 If Left(sTerm, 2) = "1/" Then

 sRes = sRes & SaySignAndVal(X) & " / " & Mid(sTerm, 3)

 Else

 sRes = sRes & SaySignAndVal(X) & " * " & sTerm

 End If

 Next I

 ' return function result

 PrintModel = sRes

End Function

Function GetModel(ByRef sStr As String) As String

 Const MARKER = "Model is "

 Dim I As Integer, J As Integer, K As Integer

 GetModel = ""

 ' find the ~ character

 I = InStr(sStr, "~")

 If I < 1 Then Exit Function

 K = Len(MARKER)

 J = InStr(sStr, MARKER)

 If J < 1 Then Exit Function

 J = J + Len(MARKER)

 ' find the comma that comes after the model

 K = InStr(J, sStr, ",")

 GetModel = Mid(sStr, J, K - J)

End Function

Sub Parse()

 Const OUTPUT_EXT = ".res.txt"

 Dim inFile As Integer, sInFilename As String

 Dim outFile As Integer, sOutFilename As String

 Dim sLine As String

 Dim I As Integer, J As Integer, K As Integer, N As Integer, M As Integer

 Dim C1 As Integer, C2 As Integer, R As Integer

 Dim X As Double

 ' clear the spreadsheet

Page 71 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 ActiveSheet.Range("A:Z").Clear

 ' prompt user for input filename

 With Application.FileDialog(msoFileDialogOpen)

 '.Filters(1) = "All files|*.*"

 .Show

 If .SelectedItems.Count > 0 Then

 sInFilename = .SelectedItems(1)

 End If

 End With

 ' find the last dot in the input filename

 I = InStrRev(sInFilename, ".")

 ' make up the output filename

 If I > 0 Then

 sOutFilename = Left(sInFilename, I - 1) & OUTPUT_EXT

 Else

 sOutFilename = sInFilename & OUTPUT_EXT

 End If

 ' tell the user about the output filename

 MsgBox "Output file is:" & vbCrLf & sOutFilename, _

 vbOKOnly + vbInformation, "For Your Information"

 On Error GoTo HandleErr

 ' open input filr

 inFile = FreeFile

 Open sInFilename For Input As #inFile

 ' open output file

 outFile = FreeFile

 Open sOutFilename For Output As #outFile

 ' write some of the headers

 Range("A1").Value = "Best # of Models"

 Range("B1").Value = "Num # of Obs"

 Range("C1").Value = "F"

 Range("D1").Value = "R^2"

 Range("E1").Value = "Model"

 Range("F1").Value = "Intercept"

 R = 2 ' start at second row

 ' loop for all input lines

 Do While Not EOF(inFile)

 ' read the next line

 Line Input #inFile, sLine

 ' process non-bank lines

 If Trim(sLine) <> "" Then

 ' Line starts with the word "Bes "?

 If InStr(LCase(sLine), "best ") = 1 Then

 Print #outFile, sLine

 Cells(R, 1) = GetValueIn(sLine)

 ' line starts with the words "Number of "?

 ElseIf InStr(LCase(sLine), "number of ") = 1 Then

 Print #outFile, sLine

 Cells(R, 2) = GetValueIn(sLine)

 Else ' found line with regression statistics and model

Page 72 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

 Cells(R, 3) = GetValueAfter(sLine, "F")

 Cells(R, 4) = GetValueAfter(sLine, "R^2")

 Cells(R, 5) = GetModel(sLine)

 Cells(R, 6) = GetValueAfter(sLine, "Intercept")

 I = 1 ' initialize variable counter

 C1 = 6 ' initialize column for first variable

 C2 = C1 ' intiialize column for next variable

 Do

 ' get teh value for the next slope

 X = GetValueAfter(sLine, "Slope" & I)

 ' Exit loop if no slope is found

 If X > BAD_RESULT Then Exit Do

 C2 = C2 + 1 ' increment next-variable coulmn index

 ' adjust header

 Cells(1, C2) = "Slope" & I

 ' store regression coefficient in cell

 Cells(R, C2) = X

 I = I + 1

 Loop

 ' now output to file

 Print #outFile, "F = " & Cells(R, 3) & ", R^2 = " & Cells(R, 4)

 Print #outFile, PrintModel(sLine, R, C1)

 R = R + 1

 End If

 End If

 Loop

ExitProc:

 Close #inFile

 Close #outFile

 Exit Sub

HandleErr:

 MsgBox "Error " & Err.Description, vbOKOnly + vbCritical, "Error"

 Resume ExitProc

End Sub

The Main Tasks of the VBA Code

The VBA code works within an Excel spreadsheet that is initially empty. When you run the

Parse macro, it performs the following tasks:

1. Prompts you to select an input file. This task uses the File Open common dialog box.

2. Displays the name of the output file, based on the name of the input file you select. The

code replaces the input filename extension with the extension .res.txt to come up with the

output filename. For example, if you chose in step 1 the input filename best.fit.dat, the

macro generates the output filename as best.fit.res.txt.

3. Reformats the input data and displays results in the spreadsheet and also writes an easy to

read version to the output file. The output to Excel places in individual cells each of the

Page 73 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

F statistic, coefficient of determination, regression model, regression intercept, and the

regression slopes. The output to a text file writes the in an easily readable form

Thus, the VBA macro gives you two forms of the output that you can incorporate in your reports

and presentations.

Sample Input and Output

The above VBA code converts the following sample output of the R functions:

Best 10 models

Number of observations = 8464

F = 109495.8443, R^2 = 0.9748922334, Model is

1/y~I(p.vect^3)+I(1/sqrt(df1.vect))+I(1/sqrt(df2.vect)), Intercept =

1.452746260, Slope1 = -0.7549204893, Slope2 = -0.4726944735, and Slope3 = -

1.124248917

F = 104935.9859, R^2 = 0.9738297601, Model is

1/y~I(p.vect^3)+I(log(df1.vect))+I(1/sqrt(df2.vect)), Intercept =

1.169084883, Slope1 = -0.7549204893, Slope2 = 0.05737550302, and Slope3 = -

1.124248917

F = 99877.83648, R^2 = 0.9725408042, Model is

1/y~I(p.vect^3)+I(1/df1.vect)+I(1/sqrt(df2.vect)), Intercept = 1.395449242,

Slope1 = -0.7549204893, Slope2 = -0.8593652257, and Slope3 = -1.124248917

F = 94697.83516, R^2 = 0.9710822129, Model is

1/y~I(p.vect^2)+I(1/sqrt(df1.vect))+I(1/sqrt(df2.vect)), Intercept =

1.742429573, Slope1 = -1.040213869, Slope2 = -0.4726944735, and Slope3 = -

1.124248917

F = 91733.97327, R^2 = 0.9701757641, Model is

1/y^2~I(p.vect^3)+I(1/sqrt(df1.vect))+I(log(df2.vect)), Intercept =

0.5743216997, Slope1 = -0.7403353229, Slope2 = -0.4758895650, and Slope3 =

0.1244083215

F = 91241.89124, R^2 = 0.9700197395, Model is

1/y~I(p.vect^2)+I(log(df1.vect))+I(1/sqrt(df2.vect)), Intercept =

1.458768196, Slope1 = -1.040213869, Slope2 = 0.05737550302, and Slope3 = -

1.124248917

F = 91221.61667, R^2 = 0.970013276, Model is

1/y^2~I(p.vect^3)+I(log(df1.vect))+I(log(df2.vect)), Intercept =

0.2874519906, Slope1 = -0.7403353229, Slope2 = 0.05817202802, and Slope3 =

0.1244083215

F = 90749.55379, R^2 = 0.9698619916, Model is

1/y~I(p.vect^3)+I(sqrt(df1.vect))+I(1/sqrt(df2.vect)), Intercept =

1.224827980, Slope1 = -0.7549204893, Slope2 = 0.02478626458, and Slope3 = -

1.124248917

F = 87364.54333, R^2 = 0.9687307836, Model is

1/y~I(p.vect^2)+I(1/df1.vect)+I(1/sqrt(df2.vect)), Intercept = 1.685132555,

Slope1 = -1.040213869, Slope2 = -0.8593652257, and Slope3 = -1.124248917

F = 85559.94591, R^2 = 0.968092309, Model is

1/y^2~I(p.vect^2)+I(1/sqrt(df1.vect))+I(log(df2.vect)), Intercept =

0.8598958186, Slope1 = -1.021859090, Slope2 = -0.4758895650, and Slope3 =

0.1244083215

Into the following more readable output:

Best 10 models

Page 74 Namir’s R 203 Best Regression

Tutorial

Copyright © 2009-2011 by Namir Shammas Document Version 0.99

Number of observations = 8464

F = 109495.8443, R^2 = 0.9748922334

1/y = 1.45274626 - 0.7549204893 * p.vect^3 - 0.4726944735 / sqrt(df1.vect) -

1.12424891 / sqrt(df2.vect)

F = 104935.9859, R^2 = 0.9738297601

1/y = 1.169084883 - 0.7549204893 * p.vect^3 + 0.05737550302 * log(df1.vect) -

1.12424891 / sqrt(df2.vect)

F = 99877.83648, R^2 = 0.9725408042

1/y = 1.395449242 - 0.7549204893 * p.vect^3 - 0.8593652257 / df1.vect -

1.12424891 / sqrt(df2.vect)

F = 94697.83516, R^2 = 0.9710822129

1/y = 1.742429573 - 1.040213869 * p.vect^2 - 0.4726944735 / sqrt(df1.vect) -

1.12424891 / sqrt(df2.vect)

F = 91733.97327, R^2 = 0.9701757641

1/y^2 = 0.5743216997 - 0.7403353229 * p.vect^3 - 0.475889565 / sqrt(df1.vect)

+ 0.124408321 * log(df2.vect)

F = 91241.89124, R^2 = 0.9700197395

1/y = 1.458768196 - 1.040213869 * p.vect^2 + 0.05737550302 * log(df1.vect) -

1.12424891 / sqrt(df2.vect)

F = 91221.61667, R^2 = 0.970013276

1/y^2 = 0.2874519906 - 0.7403353229 * p.vect^3 + 0.05817202802 *

log(df1.vect) + 0.124408321 * log(df2.vect)

F = 90749.55379, R^2 = 0.9698619916

1/y = 1.22482798 - 0.7549204893 * p.vect^3 + 0.02478626458 * sqrt(df1.vect) -

1.12424891 / sqrt(df2.vect)

F = 87364.54333, R^2 = 0.9687307836

1/y = 1.685132555 - 1.040213869 * p.vect^2 - 0.8593652257 / df1.vect -

1.12424891 / sqrt(df2.vect)

F = 85559.94591, R^2 = 0.968092309

1/y^2 = 0.8598958186 - 1.02185909 * p.vect^2 - 0.475889565 / sqrt(df1.vect) +

0.124408321 * log(df2.vect)

The above text output shows the models in a mathematical form that integrates the regression

terms and the values for the regression slopes.

In addition, the VBA macro generates the following data in the Excel spreadsheet:

